Joseph Redmon
2013-12-05 b715671988a4f3e476586df52fa3bf052cce7f80
src/network.c
@@ -2,10 +2,12 @@
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "softmax_layer.h"
network make_network(int n)
{
@@ -30,6 +32,11 @@
            forward_connected_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            forward_softmax_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            forward_maxpool_layer(layer, input);
@@ -44,14 +51,17 @@
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer(layer, step);
            update_convolutional_layer(layer, step, 0.9, .01);
        }
        else if(net.types[i] == MAXPOOL){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == SOFTMAX){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer(layer, step, .3, 0);
            update_connected_layer(layer, step, .9, 0);
        }
    }
}
@@ -64,6 +74,9 @@
    } else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output;
@@ -83,6 +96,9 @@
    } else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta;
@@ -114,7 +130,12 @@
            if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == MAXPOOL){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
@@ -130,19 +151,33 @@
    int k = get_network_output_size(net);
    int correct = 0;
    for(i = 0; i < b.n; ++i){
        show_image(b.images[i], "Input");
        forward_network(net, b.images[i].data);
        image o = get_network_image(net);
        if(o.h) show_image_collapsed(o, "Output");
        double *output = get_network_output(net);
        double *delta = get_network_delta(net);
        int max_k = 0;
        double max = 0;
        for(j = 0; j < k; ++j){
            //printf("%f %f\n", b.truth[i][j], output[j]);
            delta[j] = b.truth[i][j]-output[j];
            if(fabs(delta[j]) < .5) ++correct;
            //printf("%f\n",  output[j]);
            if(output[j] > max) {
                max = output[j];
                max_k = j;
            }
        }
        if(b.truth[i][max_k]) ++correct;
        printf("%f\n", (double)correct/(i+1));
        learn_network(net, b.images[i].data);
        update_network(net, .00001);
        update_network(net, .001);
        if(i%100 == 0){
            visualize_network(net);
            cvWaitKey(100);
        }
    }
    visualize_network(net);
    print_network(net);
    cvWaitKey(100);
    printf("Accuracy: %f\n", (double)correct/b.n);
}
@@ -162,6 +197,10 @@
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.outputs;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.inputs;
    }
    return 0;
}
@@ -181,7 +220,7 @@
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return get_maxpool_image(layer);
    }
    return make_image(0,0,0);
    return make_empty_image(0,0,0);
}
image get_network_image(network net)
@@ -191,17 +230,56 @@
        image m = get_network_image_layer(net, i);
        if(m.h != 0) return m;
    }
    return make_image(1,1,1);
    return make_empty_image(0,0,0);
}
void visualize_network(network net)
{
    int i;
    for(i = 0; i < 1; ++i){
    char buff[256];
    for(i = 0; i < net.n; ++i){
        sprintf(buff, "Layer %d", i);
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            visualize_convolutional_layer(layer);
            visualize_convolutional_filters(layer, buff);
        }
    } 
}
void print_network(network net)
{
    int i,j;
    for(i = 0; i < net.n; ++i){
        double *output;
        int n = 0;
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            output = layer.output;
            image m = get_convolutional_image(layer);
            n = m.h*m.w*m.c;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            output = layer.output;
            image m = get_maxpool_image(layer);
            n = m.h*m.w*m.c;
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            output = layer.output;
            n = layer.outputs;
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            output = layer.output;
            n = layer.inputs;
        }
        double mean = mean_array(output, n);
        double vari = variance_array(output, n);
        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
        if(n > 100) n = 100;
        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
        if(n == 100)fprintf(stderr,".....\n");
        fprintf(stderr, "\n");
    }
}