| | |
| | | #include <stdio.h> |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "data.h" |
| | | #include "utils.h" |
| | | |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "softmax_layer.h" |
| | | |
| | | void run_network(image input, network net) |
| | | network make_network(int n) |
| | | { |
| | | network net; |
| | | net.n = n; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | return net; |
| | | } |
| | | |
| | | void forward_network(network net, double *input) |
| | | { |
| | | int i; |
| | | double *input_d = 0; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | run_convolutional_layer(input, layer); |
| | | forward_convolutional_layer(layer, input); |
| | | input = layer.output; |
| | | input_d = layer.output.data; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | run_connected_layer(input_d, layer); |
| | | input_d = layer.output; |
| | | forward_connected_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | run_maxpool_layer(input, layer); |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | input_d = layer.output.data; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_network(network net, double step) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer(layer, step, 0.9, .01); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer, step, .9, 0); |
| | | } |
| | | } |
| | | } |
| | | |
| | | double *get_network_output_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | return 0; |
| | | } |
| | | double *get_network_output(network net) |
| | | { |
| | | return get_network_output_layer(net, net.n-1); |
| | | } |
| | | |
| | | double *get_network_delta_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | double *get_network_delta(network net) |
| | | { |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | void learn_network(network net, double *input) |
| | | { |
| | | int i; |
| | | double *prev_input; |
| | | double *prev_delta; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(i == 0){ |
| | | prev_input = input; |
| | | prev_delta = 0; |
| | | }else{ |
| | | prev_input = get_network_output_layer(net, i-1); |
| | | prev_delta = get_network_delta_layer(net, i-1); |
| | | } |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | learn_convolutional_layer(layer, prev_input); |
| | | if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | learn_connected_layer(layer, prev_input); |
| | | if(i != 0) backward_connected_layer(layer, prev_input, prev_delta); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void train_network_batch(network net, batch b) |
| | | { |
| | | int i,j; |
| | | int k = get_network_output_size(net); |
| | | int correct = 0; |
| | | for(i = 0; i < b.n; ++i){ |
| | | show_image(b.images[i], "Input"); |
| | | forward_network(net, b.images[i].data); |
| | | image o = get_network_image(net); |
| | | if(o.h) show_image_collapsed(o, "Output"); |
| | | double *output = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | | int max_k = 0; |
| | | double max = 0; |
| | | for(j = 0; j < k; ++j){ |
| | | delta[j] = b.truth[i][j]-output[j]; |
| | | if(output[j] > max) { |
| | | max = output[j]; |
| | | max_k = j; |
| | | } |
| | | } |
| | | if(b.truth[i][max_k]) ++correct; |
| | | printf("%f\n", (double)correct/(i+1)); |
| | | learn_network(net, b.images[i].data); |
| | | update_network(net, .001); |
| | | if(i%100 == 0){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | } |
| | | } |
| | | visualize_network(net); |
| | | print_network(net); |
| | | cvWaitKey(100); |
| | | printf("Accuracy: %f\n", (double)correct/b.n); |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | image output = get_convolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size(network net) |
| | | { |
| | | int i = net.n-1; |
| | | return get_network_output_size_layer(net, i); |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return get_convolutional_image(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return get_maxpool_image(layer); |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | } |
| | | |
| | | image get_network_image(network net) |
| | | { |
| | | int i; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | image m = get_network_image_layer(net, i); |
| | | if(m.h != 0) return m; |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | } |
| | | |
| | | void visualize_network(network net) |
| | | { |
| | | int i; |
| | | char buff[256]; |
| | | for(i = 0; i < net.n; ++i){ |
| | | sprintf(buff, "Layer %d", i); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | visualize_convolutional_filters(layer, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_network(network net) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < net.n; ++i){ |
| | | double *output; |
| | | int n = 0; |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_convolutional_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | output = layer.output; |
| | | image m = get_maxpool_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | n = layer.outputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | n = layer.inputs; |
| | | } |
| | | double mean = mean_array(output, n); |
| | | double vari = variance_array(output, n); |
| | | fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |
| | | if(n > 100) n = 100; |
| | | for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); |
| | | if(n == 100)fprintf(stderr,".....\n"); |
| | | fprintf(stderr, "\n"); |
| | | } |
| | | return make_image(1,1,1); |
| | | } |
| | | |