| | |
| | | void test_convolve() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | //show_image_layers(dog, "Dog"); |
| | | printf("dog channels %d\n", dog.c); |
| | | image kernel = make_random_image(3,3,dog.c); |
| | | image edge = make_image(dog.h, dog.w, 1); |
| | |
| | | image out_delta = get_convolutional_delta(layer); |
| | | for(i = 0; i < out.h*out.w*out.c; ++i){ |
| | | out_delta.data[i] = 1; |
| | | backward_convolutional_layer2(layer, test.data, in_delta.data); |
| | | backward_convolutional_layer(layer, test.data, in_delta.data); |
| | | image partial = copy_image(in_delta); |
| | | jacobian2[i] = partial.data; |
| | | out_delta.data[i] = 0; |
| | |
| | | int count = 0; |
| | | |
| | | double avgerr = 0; |
| | | while(1){ |
| | | while(++count < 100000000){ |
| | | double v = ((double)rand()/RAND_MAX); |
| | | double truth = v*v; |
| | | input[0] = v; |
| | |
| | | double *delta = get_network_delta(net); |
| | | double err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | //if(++count % 100000 == 0) printf("%f\n", avgerr); |
| | | if(++count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | delta[0] = truth - out[0]; |
| | | learn_network(net, input); |
| | | update_network(net, .001); |
| | |
| | | } |
| | | } |
| | | |
| | | double error_network(network net, matrix m, double *truth) |
| | | double error_network(network net, matrix m, double **truth) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | int k = get_network_output_size(net); |
| | | for(i = 0; i < m.rows; ++i){ |
| | | forward_network(net, m.vals[i]); |
| | | double *out = get_network_output(net); |
| | | double err = truth[i] - out[0]; |
| | | if(fabs(err) < .5) ++correct; |
| | | int guess = max_index(out, k); |
| | | if(truth[i][guess]) ++correct; |
| | | } |
| | | return (double)correct/m.rows; |
| | | } |
| | |
| | | |
| | | void test_nist() |
| | | { |
| | | srand(999999); |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | matrix m = csv_to_matrix("images/nist_train.csv"); |
| | | matrix ho = hold_out_matrix(&m, 3000); |
| | | matrix m = csv_to_matrix("mnist/mnist_train.csv"); |
| | | matrix test = csv_to_matrix("mnist/mnist_test.csv"); |
| | | double *truth_1d = pop_column(&m, 0); |
| | | double **truth = one_hot(truth_1d, m.rows, 10); |
| | | double *ho_truth_1d = pop_column(&ho, 0); |
| | | double **ho_truth = one_hot(ho_truth_1d, ho.rows, 10); |
| | | double *test_truth_1d = pop_column(&test, 0); |
| | | double **test_truth = one_hot(test_truth_1d, test.rows, 10); |
| | | int i,j; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < test.rows; ++i){ |
| | | normalize_array(test.vals[i], 28*28); |
| | | //scale_array(m.vals[i], 28*28, 1./255.); |
| | | //translate_array(m.vals[i], 28*28, -.1); |
| | | } |
| | | for(i = 0; i < m.rows; ++i){ |
| | | normalize_array(m.vals[i], 28*28); |
| | | //scale_array(m.vals[i], 28*28, 1./255.); |
| | | //translate_array(m.vals[i], 28*28, -.1); |
| | | } |
| | | int count = 0; |
| | | double lr = .0001; |
| | | while(++count <= 3000000){ |
| | | double lr = .0005; |
| | | while(++count <= 300){ |
| | | //lr *= .99; |
| | | int index = 0; |
| | | int correct = 0; |
| | | for(i = 0; i < 1000; ++i){ |
| | | int number = 1000; |
| | | for(i = 0; i < number; ++i){ |
| | | index = rand()%m.rows; |
| | | normalize_array(m.vals[index], 28*28); |
| | | forward_network(net, m.vals[index]); |
| | | double *out = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | |
| | | } |
| | | print_network(net); |
| | | image input = double_to_image(28,28,1, m.vals[index]); |
| | | show_image(input, "Input"); |
| | | //show_image(input, "Input"); |
| | | image o = get_network_image(net); |
| | | show_image_collapsed(o, "Output"); |
| | | //show_image_collapsed(o, "Output"); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | cvWaitKey(10); |
| | | //double test_acc = error_network(net, m, truth); |
| | | //double valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | fprintf(stderr, "%5d: %f %f\n",count, (double)correct/1000, lr); |
| | | //if(valid_acc > .70) break; |
| | | fprintf(stderr, "\n%5d: %f %f\n\n",count, (double)correct/number, lr); |
| | | if(count % 10 == 0 && 0){ |
| | | double train_acc = error_network(net, m, truth); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | double test_acc = error_network(net, test, test_truth); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | } |
| | | if(count % (m.rows/number) == 0) lr /= 2; |
| | | } |
| | | double train_acc = error_network(net, m, truth); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | double test_acc = error_network(net, test, test_truth); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | end = clock(); |
| | | printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | //printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_kernel_update() |
| | |
| | | double delta[] = {.1}; |
| | | double input[] = {.3, .5, .3, .5, .5, .5, .5, .0, .5}; |
| | | double kernel[] = {1,2,3,4,5,6,7,8,9}; |
| | | convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, IDENTITY); |
| | | convolutional_layer layer = *make_convolutional_layer(3, 3, 1, 1, 3, 1, LINEAR); |
| | | layer.kernels[0].data = kernel; |
| | | layer.delta = delta; |
| | | learn_convolutional_layer(layer, input); |
| | |
| | | learn_network(net, m.vals[index]); |
| | | update_network(net, .00001); |
| | | } |
| | | double test_acc = error_network(net, m, truth); |
| | | double valid_acc = error_network(net, ho, ho_truth); |
| | | printf("%f, %f\n", test_acc, valid_acc); |
| | | fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); |
| | | //double test_acc = error_network(net, m, truth); |
| | | //double valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); |
| | | //if(valid_acc > .70) break; |
| | | } |
| | | end = clock(); |
| | |
| | | int main() |
| | | { |
| | | //test_kernel_update(); |
| | | //test_nist(); |
| | | test_full(); |
| | | test_nist(); |
| | | //test_full(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |