| | |
| | | * `DEBUG=1` to bould debug version of Yolo |
| | | * `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU |
| | | * `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp |
| | | |
| | | or use in such a way: `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov3.cfg yolov3.weights test.mp4` |
| | | |
| | | ### How to compile on Windows: |
| | | |
| | |
| | | |
| | | **Note:** After training use such command for detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights` |
| | | |
| | | **Note:** if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4) |
| | | |
| | | ### How to train tiny-yolo (to detect your custom objects): |
| | | |
| | | Do all the same steps as for the full yolo model as described above. With the exception of: |