| | |
| | | { |
| | | int j; |
| | | list *options = read_data_cfg(datacfg); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.list"); |
| | | char *valid_images = option_find_str(options, "valid", "data/train.txt"); |
| | | char *difficult_valid_images = option_find_str(options, "difficult", NULL); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | | //char *prefix = option_find_str(options, "results", "results"); |
| | | char **names = get_labels(name_list); |
| | | char *mapf = option_find_str(options, "map", 0); |
| | | int *map = 0; |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | char *base = "comp4_det_test_"; |
| | | list *plist = get_paths(valid_images); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | char **paths_dif = NULL; |
| | | if (difficult_valid_images) { |
| | | list *plist_dif = get_paths(difficult_valid_images); |
| | | paths_dif = (char **)list_to_array(plist_dif); |
| | | } |
| | | |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | int classes = l.classes; |
| | | |
| | |
| | | args.h = net.h; |
| | | args.type = IMAGE_DATA; |
| | | |
| | | const float thresh_calc_avg_iou = 0.24; |
| | | float avg_iou = 0; |
| | | int tp_for_thresh = 0; |
| | | int fp_for_thresh = 0; |
| | | |
| | | box_prob *detections = calloc(1, sizeof(box_prob)); |
| | | int detections_count = 0; |
| | | int unique_truth_index = 0; |
| | | int unique_truth_count = 0; |
| | | |
| | | int *truth_classes_count = calloc(classes, sizeof(int)); |
| | | |
| | |
| | | } |
| | | for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { |
| | | const int image_index = i + t - nthreads; |
| | | char *path = paths[i + t - nthreads]; |
| | | char *path = paths[image_index]; |
| | | char *id = basecfg(path); |
| | | float *X = val_resized[t].data; |
| | | network_predict(net, X); |
| | |
| | | truth_classes_count[truth[j].id]++; |
| | | } |
| | | |
| | | // difficult |
| | | box_label *truth_dif = NULL; |
| | | int num_labels_dif = 0; |
| | | if (paths_dif) |
| | | { |
| | | char *path_dif = paths_dif[image_index]; |
| | | |
| | | char labelpath_dif[4096]; |
| | | find_replace(path_dif, "images", "labels", labelpath_dif); |
| | | find_replace(labelpath_dif, "JPEGImages", "labels", labelpath_dif); |
| | | find_replace(labelpath_dif, ".jpg", ".txt", labelpath_dif); |
| | | find_replace(labelpath_dif, ".JPEG", ".txt", labelpath_dif); |
| | | find_replace(labelpath_dif, ".png", ".txt", labelpath_dif); |
| | | truth_dif = read_boxes(labelpath_dif, &num_labels_dif); |
| | | } |
| | | |
| | | for (i = 0; i < (l.w*l.h*l.n); ++i) { |
| | | |
| | | int class_id; |
| | |
| | | detections[detections_count - 1].p = prob; |
| | | detections[detections_count - 1].image_index = image_index; |
| | | detections[detections_count - 1].class_id = class_id; |
| | | detections[detections_count - 1].truth_flag = 0; |
| | | detections[detections_count - 1].unique_truth_index = -1; |
| | | |
| | | int truth_index = -1; |
| | | float max_iou = 0; |
| | |
| | | float current_iou = box_iou(boxes[i], t); |
| | | if (current_iou > iou_thresh && class_id == truth[j].id) { |
| | | if (current_iou > max_iou) { |
| | | current_iou = max_iou; |
| | | truth_index = unique_truth_index + j; |
| | | max_iou = current_iou; |
| | | truth_index = unique_truth_count + j; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // best IoU |
| | | if (truth_index > -1) { |
| | | detections[detections_count - 1].truth_flag = 1; |
| | | detections[detections_count - 1].unique_truth_index = truth_index; |
| | | } |
| | | else { |
| | | // if object is difficult then remove detection |
| | | for (j = 0; j < num_labels_dif; ++j) { |
| | | box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; |
| | | float current_iou = box_iou(boxes[i], t); |
| | | if (current_iou > iou_thresh && class_id == truth_dif[j].id) { |
| | | --detections_count; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // calc avg IoU, true-positives, false-positives for required Threshold |
| | | if (prob > thresh_calc_avg_iou) { |
| | | if (truth_index > -1) { |
| | | avg_iou += max_iou; |
| | | ++tp_for_thresh; |
| | | } |
| | | else |
| | | fp_for_thresh++; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | unique_truth_index += num_labels; |
| | | unique_truth_count += num_labels; |
| | | |
| | | free(id); |
| | | free_image(val[t]); |
| | |
| | | } |
| | | } |
| | | |
| | | avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); |
| | | |
| | | |
| | | // SORT(detections) |
| | | qsort(detections, detections_count, sizeof(box_prob), detections_comparator); |
| | |
| | | for (i = 0; i < classes; ++i) { |
| | | pr[i] = calloc(detections_count, sizeof(pr_t)); |
| | | } |
| | | printf("detections_count = %d, unique_truth_index = %d \n", detections_count, unique_truth_index); |
| | | printf("detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count); |
| | | |
| | | |
| | | int *truth_flags = calloc(unique_truth_index, sizeof(int)); |
| | | int *truth_flags = calloc(unique_truth_count, sizeof(int)); |
| | | |
| | | int rank; |
| | | for (rank = 0; rank < detections_count; ++rank) { |
| | |
| | | pr[d.class_id][rank].fp++; // false-positive |
| | | } |
| | | |
| | | |
| | | for (i = 0; i < classes; ++i) |
| | | { |
| | | const int tp = pr[i][rank].tp; |
| | |
| | | mean_average_precision += avg_precision; |
| | | } |
| | | |
| | | printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", |
| | | thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); |
| | | |
| | | mean_average_precision = mean_average_precision / classes; |
| | | printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100); |
| | | |