| | |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weight_prev = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_prev = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | |
| | | |
| | | float scale = 1./sqrt(inputs); |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = scale*rand_normal(); |
| | | } |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = scale; |
| | | // layer->biases[i] = 1; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | layer->weights_cl = cl_make_array(layer->weights, inputs*outputs); |
| | | layer->biases_cl = cl_make_array(layer->biases, outputs); |
| | | layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs); |
| | | layer->biases_gpu = cuda_make_array(layer->biases, outputs); |
| | | |
| | | layer->weight_updates_cl = cl_make_array(layer->weight_updates, inputs*outputs); |
| | | layer->bias_updates_cl = cl_make_array(layer->bias_updates, outputs); |
| | | layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs); |
| | | layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs); |
| | | |
| | | layer->output_cl = cl_make_array(layer->output, outputs*batch); |
| | | layer->delta_cl = cl_make_array(layer->delta, outputs*batch); |
| | | layer->output_gpu = cuda_make_array(layer->output, outputs*batch); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch); |
| | | #endif |
| | | layer->activation = activation; |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | return layer; |
| | | } |
| | | |
| | | void secret_update_connected_layer(connected_layer *layer) |
| | | { |
| | | int n = layer->outputs*layer->inputs; |
| | | float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1); |
| | | float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1)) |
| | | * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1)); |
| | | float cos = dot/mag; |
| | | if(cos > .3) layer->learning_rate *= 1.1; |
| | | else if (cos < -.3) layer-> learning_rate /= 1.1; |
| | | |
| | | scal_cpu(n, layer->momentum, layer->weight_prev, 1); |
| | | axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1); |
| | | scal_cpu(n, 0, layer->weight_updates, 1); |
| | | |
| | | scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1); |
| | | axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1); |
| | | scal_cpu(layer->outputs, 0, layer->bias_updates, 1); |
| | | |
| | | axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1); |
| | | |
| | | axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1); |
| | | axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1); |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer) |
| | | { |
| | | axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | | { |
| | | int i; |
| | | float alpha = 1./layer.batch; |
| | | gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | axpy_cpu(layer.outputs, alpha, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | |
| | | float *a = input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | |
| | | |
| | | void pull_connected_layer(connected_layer layer) |
| | | { |
| | | cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs); |
| | | cl_read_array(layer.biases_cl, layer.biases, layer.outputs); |
| | | cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs); |
| | | cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
| | | cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs); |
| | | cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void push_connected_layer(connected_layer layer) |
| | | { |
| | | cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs); |
| | | cl_write_array(layer.biases_cl, layer.biases, layer.outputs); |
| | | cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs); |
| | | cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
| | | cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs); |
| | | cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer) |
| | | { |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | | scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_cl, 1); |
| | | /* |
| | | cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
| | | cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
| | | printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs)); |
| | | */ |
| | | |
| | | axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_cl, 1, layer.weight_updates_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
| | | pull_connected_layer(layer); |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, cl_mem input) |
| | | void forward_connected_layer_gpu(connected_layer layer, float * input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1); |
| | | copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | cl_mem a = input; |
| | | cl_mem b = layer.weights_cl; |
| | | cl_mem c = layer.output_cl; |
| | | float * a = input; |
| | | float * b = layer.weights_gpu; |
| | | float * c = layer.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation); |
| | | activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem delta) |
| | | void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int i; |
| | | gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl); |
| | | gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1); |
| | | axpy_ongpu_offset(layer.outputs, alpha, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | cl_mem a = input; |
| | | cl_mem b = layer.delta_cl; |
| | | cl_mem c = layer.weight_updates_cl; |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | float * a = input; |
| | | float * b = layer.delta_gpu; |
| | | float * c = layer.weight_updates_gpu; |
| | | gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.delta_cl; |
| | | b = layer.weights_cl; |
| | | a = layer.delta_gpu; |
| | | b = layer.weights_gpu; |
| | | c = delta; |
| | | |
| | | if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); |