| | |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator) |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | | connected_layer layer; |
| | | layer.inputs = inputs; |
| | | layer.outputs = outputs; |
| | | connected_layer *layer = calloc(1, sizeof(connected_layer)); |
| | | |
| | | layer.output = calloc(outputs, sizeof(double*)); |
| | | layer->learning_rate = learning_rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | |
| | | layer.weight_updates = calloc(inputs*outputs, sizeof(double)); |
| | | layer.weights = calloc(inputs*outputs, sizeof(double)); |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer.weights[i] = .5 - (double)rand()/RAND_MAX; |
| | | layer->inputs = inputs; |
| | | layer->outputs = outputs; |
| | | layer->batch=batch; |
| | | |
| | | layer.bias_updates = calloc(outputs, sizeof(double)); |
| | | layer.biases = calloc(outputs, sizeof(double)); |
| | | for(i = 0; i < outputs; ++i) |
| | | layer.biases[i] = (double)rand()/RAND_MAX; |
| | | layer->output = calloc(batch*outputs, sizeof(float*)); |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | if(activator == SIGMOID){ |
| | | layer.activation = sigmoid_activation; |
| | | layer.gradient = sigmoid_gradient; |
| | | }else if(activator == RELU){ |
| | | layer.activation = relu_activation; |
| | | layer.gradient = relu_gradient; |
| | | }else if(activator == IDENTITY){ |
| | | layer.activation = identity_activation; |
| | | layer.gradient = identity_gradient; |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weight_prev = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_prev = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | |
| | | |
| | | float scale = 1./sqrt(inputs); |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = scale*rand_normal(); |
| | | } |
| | | |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = scale; |
| | | // layer->biases[i] = 1; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs); |
| | | layer->biases_gpu = cuda_make_array(layer->biases, outputs); |
| | | |
| | | layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs); |
| | | layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs); |
| | | |
| | | layer->output_gpu = cuda_make_array(layer->output, outputs*batch); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch); |
| | | #endif |
| | | layer->activation = activation; |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | return layer; |
| | | } |
| | | |
| | | void run_connected_layer(double *input, connected_layer layer) |
| | | void secret_update_connected_layer(connected_layer *layer) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = layer.biases[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.output[i] += input[j]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | layer.output[i] = layer.activation(layer.output[i]); |
| | | int n = layer->outputs*layer->inputs; |
| | | float dot = dot_cpu(n, layer->weight_updates, 1, layer->weight_prev, 1); |
| | | float mag = sqrt(dot_cpu(n, layer->weight_updates, 1, layer->weight_updates, 1)) |
| | | * sqrt(dot_cpu(n, layer->weight_prev, 1, layer->weight_prev, 1)); |
| | | float cos = dot/mag; |
| | | if(cos > .3) layer->learning_rate *= 1.1; |
| | | else if (cos < -.3) layer-> learning_rate /= 1.1; |
| | | |
| | | scal_cpu(n, layer->momentum, layer->weight_prev, 1); |
| | | axpy_cpu(n, 1, layer->weight_updates, 1, layer->weight_prev, 1); |
| | | scal_cpu(n, 0, layer->weight_updates, 1); |
| | | |
| | | scal_cpu(layer->outputs, layer->momentum, layer->bias_prev, 1); |
| | | axpy_cpu(layer->outputs, 1, layer->bias_updates, 1, layer->bias_prev, 1); |
| | | scal_cpu(layer->outputs, 0, layer->bias_updates, 1); |
| | | |
| | | axpy_cpu(layer->outputs, layer->learning_rate, layer->bias_prev, 1, layer->biases, 1); |
| | | |
| | | axpy_cpu(layer->inputs*layer->outputs, -layer->decay, layer->weights, 1, layer->weight_prev, 1); |
| | | axpy_cpu(layer->inputs*layer->outputs, layer->learning_rate, layer->weight_prev, 1, layer->weights, 1); |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer) |
| | | { |
| | | axpy_cpu(layer.outputs, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.outputs, layer.momentum, layer.bias_updates, 1); |
| | | |
| | | axpy_cpu(layer.inputs*layer.outputs, -layer.decay, layer.weights, 1, layer.weight_updates, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates, 1, layer.weights, 1); |
| | | scal_cpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates, 1); |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, float *input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | float *a = input; |
| | | float *b = layer.weights; |
| | | float *c = layer.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array(layer.output, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void learn_connected_layer(double *input, connected_layer layer) |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | | { |
| | | calculate_update_connected_layer(input, layer); |
| | | backpropagate_connected_layer(input, layer); |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, double step) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.biases[i] += step*layer.bias_updates[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | int index = i*layer.inputs+j; |
| | | layer.weights[index] += step*layer.weight_updates[index]; |
| | | } |
| | | int i; |
| | | float alpha = 1./layer.batch; |
| | | gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_cpu(layer.outputs, alpha, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(double)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double)); |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | float *a = input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | gemm(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.delta; |
| | | b = layer.weights; |
| | | c = delta; |
| | | |
| | | if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | |
| | | void calculate_update_connected_layer(double *input, connected_layer layer) |
| | | #ifdef GPU |
| | | |
| | | void pull_connected_layer(connected_layer layer) |
| | | { |
| | | int i, j; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_updates[i] += layer.output[i]; |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | layer.weight_updates[i*layer.inputs + j] += layer.output[i]*input[j]; |
| | | } |
| | | } |
| | | cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
| | | cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs); |
| | | cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void backpropagate_connected_layer(double *input, connected_layer layer) |
| | | void push_connected_layer(connected_layer layer) |
| | | { |
| | | int i, j; |
| | | |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | double grad = layer.gradient(input[j]); |
| | | input[j] = 0; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | input[j] += layer.output[i]*layer.weights[i*layer.inputs + j]; |
| | | } |
| | | input[j] *= grad; |
| | | } |
| | | cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
| | | cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs); |
| | | cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer) |
| | | { |
| | | /* |
| | | cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
| | | cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
| | | printf("Weights: %f updates: %f\n", mag_array(layer.weights, layer.inputs*layer.outputs), layer.learning_rate*mag_array(layer.weight_updates, layer.inputs*layer.outputs)); |
| | | */ |
| | | |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.outputs, layer.momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(layer.inputs*layer.outputs, -layer.decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_gpu, 1); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, float * input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | float * a = input; |
| | | float * b = layer.weights_gpu; |
| | | float * c = layer.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer layer, float * input, float * delta) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int i; |
| | | gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_ongpu_offset(layer.outputs, alpha, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | float * a = input; |
| | | float * b = layer.delta_gpu; |
| | | float * c = layer.weight_updates_gpu; |
| | | gemm_ongpu(1,0,m,n,k,alpha,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.delta_gpu; |
| | | b = layer.weights_gpu; |
| | | c = delta; |
| | | |
| | | if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | #endif |