| | |
| | | } |
| | | */ |
| | | |
| | | char *basename(char *cfgfile) |
| | | { |
| | | char *c = cfgfile; |
| | | char *next; |
| | | while((next = strchr(c, '/'))) |
| | | { |
| | | c = next+1; |
| | | } |
| | | c = copy_string(c); |
| | | next = strchr(c, '_'); |
| | | if (next) *next = 0; |
| | | next = strchr(c, '.'); |
| | | if (next) *next = 0; |
| | | return c; |
| | | } |
| | | |
| | | void train_imagenet(char *cfgfile) |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | float avg_loss = -1; |
| | | srand(time(0)); |
| | | char *base = basename(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | //test_learn_bias(*(convolutional_layer *)net.layers[1]); |
| | | //set_learning_network(&net, net.learning_rate, 0, net.decay); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 3072; |
| | | int imgs = 1024; |
| | | int i = net.seen/imgs; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | |
| | | time=clock(); |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | //normalize_data_rows(train); |
| | | //translate_data_rows(train, -128); |
| | | //scale_data_rows(train, 1./128); |
| | | load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network(net, train); |
| | | net.seen += imgs; |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen); |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.cfg",base, i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | |
| | | |
| | | pthread_join(load_thread, 0); |
| | | val = buffer; |
| | | //normalize_data_rows(val); |
| | | |
| | | num = (i+1)*m/splits - i*m/splits; |
| | | char **part = paths+(i*m/splits); |
| | |
| | | |
| | | void test_init(char *cfgfile) |
| | | { |
| | | gpu_index = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | |
| | | } |
| | | free_image(im); |
| | | } |
| | | |
| | | void test_imagenet() |
| | | void test_dog(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet_test.cfg"); |
| | | image im = load_image_color("data/dog.jpg", 256, 256); |
| | | translate_image(im, -128); |
| | | print_image(im); |
| | | float *X = im.data; |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | float *predictions = network_predict(net, X); |
| | | image crop = get_network_image_layer(net, 0); |
| | | //show_image(crop, "cropped"); |
| | | // print_image(crop); |
| | | //show_image(im, "orig"); |
| | | float * inter = get_network_output(net); |
| | | pm(1000, 1, inter); |
| | | //cvWaitKey(0); |
| | | } |
| | | |
| | | void test_imagenet(char *cfgfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | set_batch_network(&net, 1); |
| | | //imgs=1; |
| | | srand(2222222); |
| | | int i = 0; |
| | |
| | | fgets(filename, 256, stdin); |
| | | strtok(filename, "\n"); |
| | | image im = load_image_color(filename, 256, 256); |
| | | z_normalize_image(im); |
| | | translate_image(im, -128); |
| | | scale_image(im, 1/128.); |
| | | printf("%d %d %d\n", im.h, im.w, im.c); |
| | | float *X = im.data; |
| | | time=clock(); |
| | |
| | | } |
| | | |
| | | /* |
| | | void train_nist_distributed(char *address) |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.client"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | //normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | client_update(net, address); |
| | | end = clock(); |
| | | //float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | void train_nist_distributed(char *address) |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.client"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | //normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | client_update(net, address); |
| | | end = clock(); |
| | | //float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | */ |
| | | } |
| | | */ |
| | | |
| | | void test_ensemble() |
| | | { |
| | |
| | | void visualize_cat() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | image im = load_image_color("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data, 0, 0); |
| | |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void test_convolutional_layer() |
| | | { |
| | | network net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | |
| | | bias_output_gpu(layer); |
| | | cuda_compare(layer.output_gpu, layer.output, out_size, "biased output"); |
| | | } |
| | | #endif |
| | | |
| | | void test_correct_nist() |
| | | { |
| | |
| | | gpu_index = -1; |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | net = parse_network_cfg("cfg/nist_conv.cfg"); |
| | | while(++count <= 5){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | |
| | | } |
| | | |
| | | /* |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_batch_network(&net, 1); |
| | | server_update(net); |
| | | } |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/net.cfg"); |
| | | set_batch_network(&net, 1); |
| | | server_update(net); |
| | | } |
| | | |
| | | void test_client() |
| | | { |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | clock_t time=clock(); |
| | | client_update(net, "localhost"); |
| | | printf("1\n"); |
| | | client_update(net, "localhost"); |
| | | printf("2\n"); |
| | | client_update(net, "localhost"); |
| | | printf("3\n"); |
| | | printf("Transfered: %lf seconds\n", sec(clock()-time)); |
| | | } |
| | | */ |
| | | void test_client() |
| | | { |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | clock_t time=clock(); |
| | | client_update(net, "localhost"); |
| | | printf("1\n"); |
| | | client_update(net, "localhost"); |
| | | printf("2\n"); |
| | | client_update(net, "localhost"); |
| | | printf("3\n"); |
| | | printf("Transfered: %lf seconds\n", sec(clock()-time)); |
| | | } |
| | | */ |
| | | |
| | | void del_arg(int argc, char **argv, int index) |
| | | { |
| | |
| | | |
| | | if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
| | | else if(0==strcmp(argv[1], "test_correct_nist")) test_correct_nist(); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(); |
| | | //else if(0==strcmp(argv[1], "server")) run_server(); |
| | | |
| | | #ifdef GPU |
| | |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "detection")) train_detection_net(argv[2]); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(argv[2]); |
| | | else if(0==strcmp(argv[1], "dog")) test_dog(argv[2]); |
| | | else if(0==strcmp(argv[1], "ctrain")) train_cifar10(argv[2]); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(argv[2]); |
| | | else if(0==strcmp(argv[1], "ctest")) test_cifar10(argv[2]); |