Joseph Redmon
2015-12-08 c2738835f0a2435ab03f411af3d168aec389d2a6
src/parser.c
@@ -14,8 +14,8 @@
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "avgpool_layer.h"
#include "local_layer.h"
#include "route_layer.h"
#include "list.h"
#include "option_list.h"
@@ -28,6 +28,7 @@
int is_network(section *s);
int is_convolutional(section *s);
int is_local(section *s);
int is_deconvolutional(section *s);
int is_connected(section *s);
int is_maxpool(section *s);
@@ -38,7 +39,6 @@
int is_crop(section *s);
int is_cost(section *s);
int is_detection(section *s);
int is_region(section *s);
int is_route(section *s);
list *read_cfg(char *filename);
@@ -109,6 +109,27 @@
    return layer;
}
local_layer parse_local(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    int pad = option_find_int(options, "pad",0);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    int batch,h,w,c;
    h = params.h;
    w = params.w;
    c = params.c;
    batch=params.batch;
    if(!(h && w && c)) error("Layer before local layer must output image.");
    local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation);
    return layer;
}
convolutional_layer parse_convolutional(list *options, size_params params)
{
    int n = option_find_int(options, "filters",1);
@@ -168,35 +189,19 @@
    int coords = option_find_int(options, "coords", 1);
    int classes = option_find_int(options, "classes", 1);
    int rescore = option_find_int(options, "rescore", 0);
    int joint = option_find_int(options, "joint", 0);
    int objectness = option_find_int(options, "objectness", 0);
    int background = option_find_int(options, "background", 0);
    detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness);
    return layer;
}
region_layer parse_region(list *options, size_params params)
{
    int coords = option_find_int(options, "coords", 1);
    int classes = option_find_int(options, "classes", 1);
    int rescore = option_find_int(options, "rescore", 0);
    int num = option_find_int(options, "num", 1);
    int side = option_find_int(options, "side", 7);
    region_layer layer = make_region_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
    detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore);
    layer.softmax = option_find_int(options, "softmax", 0);
    layer.sqrt = option_find_int(options, "sqrt", 0);
    layer.object_logistic = option_find_int(options, "object_logistic", 0);
    layer.class_logistic = option_find_int(options, "class_logistic", 0);
    layer.coord_logistic = option_find_int(options, "coord_logistic", 0);
    layer.coord_scale = option_find_float(options, "coord_scale", 1);
    layer.forced = option_find_int(options, "forced", 0);
    layer.object_scale = option_find_float(options, "object_scale", 1);
    layer.noobject_scale = option_find_float(options, "noobject_scale", 1);
    layer.class_scale = option_find_float(options, "class_scale", 1);
    layer.jitter = option_find_float(options, "jitter", .1);
    layer.jitter = option_find_float(options, "jitter", .2);
    return layer;
}
@@ -420,6 +425,8 @@
        layer l = {0};
        if(is_convolutional(s)){
            l = parse_convolutional(options, params);
        }else if(is_local(s)){
            l = parse_local(options, params);
        }else if(is_deconvolutional(s)){
            l = parse_deconvolutional(options, params);
        }else if(is_connected(s)){
@@ -430,8 +437,6 @@
            l = parse_cost(options, params);
        }else if(is_detection(s)){
            l = parse_detection(options, params);
        }else if(is_region(s)){
            l = parse_region(options, params);
        }else if(is_softmax(s)){
            l = parse_softmax(options, params);
        }else if(is_normalization(s)){
@@ -485,9 +490,9 @@
{
    return (strcmp(s->type, "[detection]")==0);
}
int is_region(section *s)
int is_local(section *s)
{
    return (strcmp(s->type, "[region]")==0);
    return (strcmp(s->type, "[local]")==0);
}
int is_deconvolutional(section *s)
{
@@ -650,6 +655,16 @@
#endif
            fwrite(l.biases, sizeof(float), l.outputs, fp);
            fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp);
        } if(l.type == LOCAL){
#ifdef GPU
            if(gpu_index >= 0){
                pull_local_layer(l);
            }
#endif
            int locations = l.out_w*l.out_h;
            int size = l.size*l.size*l.c*l.n*locations;
            fwrite(l.biases, sizeof(float), l.outputs, fp);
            fwrite(l.filters, sizeof(float), size, fp);
        }
    }
    fclose(fp);
@@ -710,6 +725,17 @@
            }
#endif
        }
        if(l.type == LOCAL){
            int locations = l.out_w*l.out_h;
            int size = l.size*l.size*l.c*l.n*locations;
            fread(l.biases, sizeof(float), l.outputs, fp);
            fread(l.filters, sizeof(float), size, fp);
#ifdef GPU
            if(gpu_index >= 0){
                push_local_layer(l);
            }
#endif
        }
    }
    fprintf(stderr, "Done!\n");
    fclose(fp);