| | |
| | | #include "dropout_layer.h" |
| | | #include "route_layer.h" |
| | | |
| | | int get_current_batch(network net) |
| | | { |
| | | int batch_num = (*net.seen)/(net.batch*net.subdivisions); |
| | | return batch_num; |
| | | } |
| | | |
| | | float get_current_rate(network net) |
| | | { |
| | | int batch_num = get_current_batch(net); |
| | | int i; |
| | | float rate; |
| | | switch (net.policy) { |
| | | case CONSTANT: |
| | | return net.learning_rate; |
| | | case STEP: |
| | | return net.learning_rate * pow(net.scale, batch_num/net.step); |
| | | case STEPS: |
| | | rate = net.learning_rate; |
| | | for(i = 0; i < net.num_steps; ++i){ |
| | | if(net.steps[i] > batch_num) return rate; |
| | | rate *= net.scales[i]; |
| | | } |
| | | return rate; |
| | | case EXP: |
| | | return net.learning_rate * pow(net.gamma, batch_num); |
| | | case POLY: |
| | | return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
| | | case SIG: |
| | | return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); |
| | | default: |
| | | fprintf(stderr, "Policy is weird!\n"); |
| | | return net.learning_rate; |
| | | } |
| | | } |
| | | |
| | | char *get_layer_string(LAYER_TYPE a) |
| | | { |
| | | switch(a){ |
| | |
| | | network net = {0}; |
| | | net.n = n; |
| | | net.layers = calloc(net.n, sizeof(layer)); |
| | | net.seen = calloc(1, sizeof(int)); |
| | | #ifdef GPU |
| | | net.input_gpu = calloc(1, sizeof(float *)); |
| | | net.truth_gpu = calloc(1, sizeof(float *)); |
| | |
| | | { |
| | | int i; |
| | | int update_batch = net.batch*net.subdivisions; |
| | | float rate = get_current_rate(net); |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | update_convolutional_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } else if(l.type == DECONVOLUTIONAL){ |
| | | update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay); |
| | | update_deconvolutional_layer(l, rate, net.momentum, net.decay); |
| | | } else if(l.type == CONNECTED){ |
| | | update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | update_connected_layer(l, update_batch, rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | |
| | | |
| | | float train_network_datum(network net, float *x, float *y) |
| | | { |
| | | *net.seen += net.batch; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
| | | #endif |
| | |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | float error = get_network_cost(net); |
| | | if((net.seen/net.batch)%net.subdivisions == 0) update_network(net); |
| | | if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); |
| | | return error; |
| | | } |
| | | |
| | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | net.seen += batch; |
| | | get_random_batch(d, batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | net.seen += batch; |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |