| | |
| | | #include "crop_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "avgpool_layer.h" |
| | | #include "route_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | |
| | | int is_deconvolutional(section *s); |
| | | int is_connected(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_avgpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_softmax(section *s); |
| | | int is_normalization(section *s); |
| | | int is_crop(section *s); |
| | | int is_cost(section *s); |
| | | int is_detection(section *s); |
| | | int is_region(section *s); |
| | | int is_route(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | |
| | | #ifdef GPU |
| | | if(weights || biases) push_deconvolutional_layer(layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | #ifdef GPU |
| | | if(weights || biases) push_convolutional_layer(layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | #ifdef GPU |
| | | if(weights || biases) push_connected_layer(layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | { |
| | | int groups = option_find_int(options, "groups",1); |
| | | softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | int rescore = option_find_int(options, "rescore", 0); |
| | | int joint = option_find_int(options, "joint", 0); |
| | | int objectness = option_find_int(options, "objectness", 0); |
| | | int background = option_find_int(options, "background", 1); |
| | | int background = option_find_int(options, "background", 0); |
| | | detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | region_layer parse_region(list *options, size_params params) |
| | | { |
| | | int coords = option_find_int(options, "coords", 1); |
| | | int classes = option_find_int(options, "classes", 1); |
| | | int rescore = option_find_int(options, "rescore", 0); |
| | | int num = option_find_int(options, "num", 1); |
| | | int side = option_find_int(options, "side", 7); |
| | | region_layer layer = make_region_layer(params.batch, params.inputs, num, side, classes, coords, rescore); |
| | | int softmax = option_find_int(options, "softmax", 0); |
| | | int sqrt = option_find_int(options, "sqrt", 0); |
| | | layer.softmax = softmax; |
| | | layer.sqrt = sqrt; |
| | | return layer; |
| | | } |
| | | |
| | |
| | | { |
| | | char *type_s = option_find_str(options, "type", "sse"); |
| | | COST_TYPE type = get_cost_type(type_s); |
| | | cost_layer layer = make_cost_layer(params.batch, params.inputs, type); |
| | | option_unused(options); |
| | | float scale = option_find_float_quiet(options, "scale",1); |
| | | cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before crop layer must output image."); |
| | | |
| | | int noadjust = option_find_int_quiet(options, "noadjust",0); |
| | | |
| | | crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); |
| | | option_unused(options); |
| | | l.noadjust = noadjust; |
| | | return l; |
| | | } |
| | | |
| | |
| | | if(!(h && w && c)) error("Layer before maxpool layer must output image."); |
| | | |
| | | maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | avgpool_layer parse_avgpool(list *options, size_params params) |
| | | { |
| | | int batch,w,h,c; |
| | | w = params.w; |
| | | h = params.h; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before avgpool layer must output image."); |
| | | |
| | | avgpool_layer layer = make_avgpool_layer(batch,w,h,c); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | { |
| | | float probability = option_find_float(options, "probability", .5); |
| | | dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); |
| | | option_unused(options); |
| | | layer.out_w = params.w; |
| | | layer.out_h = params.h; |
| | | layer.out_c = params.c; |
| | | return layer; |
| | | } |
| | | |
| | | layer parse_normalization(list *options, size_params params) |
| | | { |
| | | float alpha = option_find_float(options, "alpha", .0001); |
| | | float beta = option_find_float(options, "beta" , .75); |
| | | float kappa = option_find_float(options, "kappa", 1); |
| | | int size = option_find_int(options, "size", 5); |
| | | layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa); |
| | | return l; |
| | | } |
| | | |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "layers"); |
| | |
| | | } |
| | | } |
| | | |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | learning_rate_policy get_policy(char *s) |
| | | { |
| | | if (strcmp(s, "poly")==0) return POLY; |
| | | if (strcmp(s, "constant")==0) return CONSTANT; |
| | | if (strcmp(s, "step")==0) return STEP; |
| | | if (strcmp(s, "exp")==0) return EXP; |
| | | if (strcmp(s, "sigmoid")==0) return SIG; |
| | | if (strcmp(s, "steps")==0) return STEPS; |
| | | fprintf(stderr, "Couldn't find policy %s, going with constant\n", s); |
| | | return CONSTANT; |
| | | } |
| | | |
| | | void parse_net_options(list *options, network *net) |
| | | { |
| | | net->batch = option_find_int(options, "batch",1); |
| | | net->learning_rate = option_find_float(options, "learning_rate", .001); |
| | | net->momentum = option_find_float(options, "momentum", .9); |
| | | net->decay = option_find_float(options, "decay", .0001); |
| | | net->seen = option_find_int(options, "seen",0); |
| | | int subdivs = option_find_int(options, "subdivisions",1); |
| | | net->batch /= subdivs; |
| | | net->subdivisions = subdivs; |
| | |
| | | net->w = option_find_int_quiet(options, "width",0); |
| | | net->c = option_find_int_quiet(options, "channels",0); |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | option_unused(options); |
| | | |
| | | char *policy_s = option_find_str(options, "policy", "constant"); |
| | | net->policy = get_policy(policy_s); |
| | | if(net->policy == STEP){ |
| | | net->step = option_find_int(options, "step", 1); |
| | | net->scale = option_find_float(options, "scale", 1); |
| | | } else if (net->policy == STEPS){ |
| | | char *l = option_find(options, "steps"); |
| | | char *p = option_find(options, "scales"); |
| | | if(!l || !p) error("STEPS policy must have steps and scales in cfg file"); |
| | | |
| | | int len = strlen(l); |
| | | int n = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (l[i] == ',') ++n; |
| | | } |
| | | int *steps = calloc(n, sizeof(int)); |
| | | float *scales = calloc(n, sizeof(float)); |
| | | for(i = 0; i < n; ++i){ |
| | | int step = atoi(l); |
| | | float scale = atof(p); |
| | | l = strchr(l, ',')+1; |
| | | p = strchr(p, ',')+1; |
| | | steps[i] = step; |
| | | scales[i] = scale; |
| | | } |
| | | net->scales = scales; |
| | | net->steps = steps; |
| | | net->num_steps = n; |
| | | } else if (net->policy == EXP){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | } else if (net->policy == SIG){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | net->step = option_find_int(options, "step", 1); |
| | | } else if (net->policy == POLY){ |
| | | net->power = option_find_float(options, "power", 1); |
| | | } |
| | | net->max_batches = option_find_int(options, "max_batches", 0); |
| | | } |
| | | |
| | | network parse_network_cfg(char *filename) |
| | |
| | | |
| | | n = n->next; |
| | | int count = 0; |
| | | free_section(s); |
| | | while(n){ |
| | | fprintf(stderr, "%d: ", count); |
| | | s = (section *)n->val; |
| | |
| | | l = parse_cost(options, params); |
| | | }else if(is_detection(s)){ |
| | | l = parse_detection(options, params); |
| | | }else if(is_region(s)){ |
| | | l = parse_region(options, params); |
| | | }else if(is_softmax(s)){ |
| | | l = parse_softmax(options, params); |
| | | }else if(is_normalization(s)){ |
| | | l = parse_normalization(options, params); |
| | | }else if(is_maxpool(s)){ |
| | | l = parse_maxpool(options, params); |
| | | }else if(is_avgpool(s)){ |
| | | l = parse_avgpool(options, params); |
| | | }else if(is_route(s)){ |
| | | l = parse_route(options, params, net); |
| | | }else if(is_dropout(s)){ |
| | | l = parse_dropout(options, params); |
| | | l.output = net.layers[count-1].output; |
| | | l.delta = net.layers[count-1].delta; |
| | | #ifdef GPU |
| | | #ifdef GPU |
| | | l.output_gpu = net.layers[count-1].output_gpu; |
| | | l.delta_gpu = net.layers[count-1].delta_gpu; |
| | | #endif |
| | | #endif |
| | | }else{ |
| | | fprintf(stderr, "Type not recognized: %s\n", s->type); |
| | | } |
| | | l.dontload = option_find_int_quiet(options, "dontload", 0); |
| | | option_unused(options); |
| | | net.layers[count] = l; |
| | | free_section(s); |
| | | n = n->next; |
| | |
| | | { |
| | | return (strcmp(s->type, "[detection]")==0); |
| | | } |
| | | int is_region(section *s) |
| | | { |
| | | return (strcmp(s->type, "[region]")==0); |
| | | } |
| | | int is_deconvolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[deconv]")==0 |
| | |
| | | return (strcmp(s->type, "[max]")==0 |
| | | || strcmp(s->type, "[maxpool]")==0); |
| | | } |
| | | int is_avgpool(section *s) |
| | | { |
| | | return (strcmp(s->type, "[avg]")==0 |
| | | || strcmp(s->type, "[avgpool]")==0); |
| | | } |
| | | int is_dropout(section *s) |
| | | { |
| | | return (strcmp(s->type, "[dropout]")==0); |
| | | } |
| | | |
| | | int is_normalization(section *s) |
| | | { |
| | | return (strcmp(s->type, "[lrn]")==0 |
| | | || strcmp(s->type, "[normalization]")==0); |
| | | } |
| | | |
| | | int is_softmax(section *s) |
| | | { |
| | | return (strcmp(s->type, "[soft]")==0 |
| | |
| | | return sections; |
| | | } |
| | | |
| | | void save_weights(network net, char *filename) |
| | | void save_weights_double(network net, char *filename) |
| | | { |
| | | fprintf(stderr, "Saving doubled weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | fwrite(net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i,j,k; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | float zero = 0; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | |
| | | for (j = 0; j < l.n; ++j){ |
| | | int index = j*l.c*l.size*l.size; |
| | | fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp); |
| | | for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp); |
| | | } |
| | | for (j = 0; j < l.n; ++j){ |
| | | int index = j*l.c*l.size*l.size; |
| | | for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp); |
| | | fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp); |
| | | } |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void save_weights_upto(network net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Saving weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | fwrite(&net.seen, sizeof(int), 1, fp); |
| | | fwrite(net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | for(i = 0; i < net.n && i < cutoff; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | |
| | | } |
| | | fclose(fp); |
| | | } |
| | | void save_weights(network net, char *filename) |
| | | { |
| | | save_weights_upto(net, filename, net.n); |
| | | } |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s\n", filename); |
| | | fprintf(stderr, "Loading weights from %s...", filename); |
| | | fflush(stdout); |
| | | FILE *fp = fopen(filename, "r"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fread(&net->learning_rate, sizeof(float), 1, fp); |
| | | fread(&net->momentum, sizeof(float), 1, fp); |
| | | fread(&net->decay, sizeof(float), 1, fp); |
| | | fread(&net->seen, sizeof(int), 1, fp); |
| | | fprintf(stderr, "%f %f %f %d\n", net->learning_rate, net->momentum, net->decay, net->seen); |
| | | float garbage; |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n && i < cutoff; ++i){ |
| | | layer l = net->layers[i]; |
| | | if (l.dontload) continue; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | |
| | | #endif |
| | | } |
| | | } |
| | | fprintf(stderr, "Done!\n"); |
| | | fclose(fp); |
| | | } |
| | | |