| | |
| | | #include "mini_blas.h" |
| | | #include <clBLAS.h> |
| | | #include "gemm.h" |
| | | #include "utils.h" |
| | | #include "im2col.h" |
| | | #include "cuda.h" |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | #include <float.h> |
| | | #include <string.h> |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | #if defined(_OPENMP) |
| | | #include <omp.h> |
| | | #endif |
| | | |
| | | void gemm_bin(int M, int N, int K, float ALPHA, |
| | | char *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | char A_PART = A[i*lda+k]; |
| | | if(A_PART){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += B[k*ldb+j]; |
| | | } |
| | | } else { |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] -= B[k*ldb+j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *random_matrix(int rows, int cols) |
| | | { |
| | | int i; |
| | | float *m = calloc(rows*cols, sizeof(float)); |
| | | for(i = 0; i < rows*cols; ++i){ |
| | | m[i] = (float)rand()/RAND_MAX; |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void time_random_matrix(int TA, int TB, int m, int k, int n) |
| | | { |
| | | float *a; |
| | | if(!TA) a = random_matrix(m,k); |
| | | else a = random_matrix(k,m); |
| | | int lda = (!TA)?k:m; |
| | | float *b; |
| | | if(!TB) b = random_matrix(k,n); |
| | | else b = random_matrix(n,k); |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<10; ++i){ |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | |
| | | gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); |
| | | } |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | |
| | | //-------------------------------------------- |
| | | // XNOR bitwise GEMM for binary neural network |
| | | //-------------------------------------------- |
| | | |
| | | #include <stdint.h> |
| | | |
| | | static inline unsigned char xnor(unsigned char a, unsigned char b) { |
| | | //return a == b; |
| | | return !(a^b); |
| | | } |
| | | |
| | | // INT-32 |
| | | static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) { |
| | | size_t src_i = index / 32; |
| | | int src_shift = index % 32; |
| | | unsigned char val = (src[src_i] & (1 << src_shift)) > 0; |
| | | return val; |
| | | } |
| | | |
| | | static inline uint32_t xnor_int32(uint32_t a, uint32_t b) { |
| | | return ~(a^b); |
| | | } |
| | | |
| | | static inline uint64_t xnor_int64(uint64_t a, uint64_t b) { |
| | | return ~(a^b); |
| | | } |
| | | |
| | | |
| | | static inline uint32_t fill_bit_int32(char src) { |
| | | if (src == 0) return 0x00000000; |
| | | else return 0xFFFFFFFF; |
| | | } |
| | | |
| | | static inline uint64_t fill_bit_int64(char src) { |
| | | if (src == 0) return 0x0000000000000000; |
| | | else return 0xFFFFFFFFFFFFFFFF; |
| | | } |
| | | |
| | | void binary_int32_printf(uint32_t src) { |
| | | int i; |
| | | for (i = 0; i < 32; ++i) { |
| | | if (src & 1) printf("1"); |
| | | else printf("0"); |
| | | src = src >> 1; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | void binary_int64_printf(uint64_t src) { |
| | | int i; |
| | | for (i = 0; i < 64; ++i) { |
| | | if (src & 1) printf("1"); |
| | | else printf("0"); |
| | | src = src >> 1; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | register float A_PART = ALPHA*A[i*lda+k]; |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += A_PART*B[k*ldb+j]; |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | char a_bit = get_bit(A, i*lda + k); |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | char b_bit = get_bit(B, k*ldb + j); |
| | | count_arr[i*ldc + j] += xnor(a_bit, b_bit); |
| | | } |
| | | } |
| | | } |
| | | |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | } |
| | | } |
| | | free(count_arr); |
| | | } |
| | | */ |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | char a_bit = get_bit(A, i*lda + k); |
| | | char b_bit = get_bit(B, j*ldb + k); |
| | | count_arr[i*ldc + j] += xnor(a_bit, b_bit); |
| | | } |
| | | } |
| | | } |
| | | |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | } |
| | | } |
| | | free(count_arr); |
| | | } |
| | | */ |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | const char a_bit = get_bit(A, i*lda + k); |
| | | uint64_t a_bit64 = fill_bit_int64(a_bit); |
| | | int k_ldb = k*ldb; |
| | | |
| | | for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056] |
| | | if ((N - j > 64) && (k_ldb % 8 == 0)) { |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc |
| | | printf("\n %d \n", __popcnt64(c_bit64)); // msvs |
| | | |
| | | int h; |
| | | for (h = 0; h < 64; ++h) |
| | | if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1; |
| | | |
| | | //binary_int64_printf(a_bit64); |
| | | //binary_int64_printf(b_bit64); |
| | | //binary_int64_printf(c_bit64); |
| | | } |
| | | else { |
| | | for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | char b_bit = get_bit(B, k_ldb + j); |
| | | if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1; |
| | | } |
| | | } |
| | | |
| | | } |
| | | } |
| | | } |
| | | |
| | | if (mean_arr) { |
| | | //int K_2 = K / 2; |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | //float mean_val2 = 2 * mean_val; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2; |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < M; ++i) { |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = count_arr[i*ldc + j] - K / 2; |
| | | } |
| | | } |
| | | } |
| | | |
| | | free(count_arr); |
| | | |
| | | //getchar(); |
| | | } |
| | | */ |
| | | |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | |
| | | for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | |
| | | #ifdef WIN32 |
| | | int tmp_count = __popcnt64(c_bit64); |
| | | #else |
| | | int tmp_count = __builtin_popcountll(c_bit64); |
| | | #endif |
| | | |
| | | if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits |
| | | count += tmp_count; |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | */ |
| | | |
| | | //---------------------------- |
| | | |
| | | |
| | | void transpose_8x8_bits_my(unsigned char *A, unsigned char *B, int lda, int ldb) |
| | | { |
| | | unsigned x, y, t; |
| | | for (y = 0; y < 8; ++y) { |
| | | for (x = 0; x < 8; ++x) { |
| | | if (A[y * lda] & (1 << x)) B[x * ldb] |= 1 << y; |
| | | } |
| | | } |
| | | } |
| | | |
| | | unsigned char reverse_byte_1(char a) |
| | | { |
| | | return ((a & 0x1) << 7) | ((a & 0x2) << 5) | |
| | | ((a & 0x4) << 3) | ((a & 0x8) << 1) | |
| | | ((a & 0x10) >> 1) | ((a & 0x20) >> 3) | |
| | | ((a & 0x40) >> 5) | ((a & 0x80) >> 7); |
| | | } |
| | | |
| | | unsigned char reverse_byte_2(unsigned char a) |
| | | { |
| | | return ((a * 0x0802LU & 0x22110LU) | (a * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; |
| | | } |
| | | |
| | | static unsigned char lookup[16] = { |
| | | 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
| | | 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf, }; |
| | | |
| | | unsigned char reverse_byte(unsigned char n) { |
| | | // Reverse the top and bottom nibble then swap them. |
| | | return (lookup[n & 0b1111] << 4) | lookup[n >> 4]; |
| | | } |
| | | |
| | | |
| | | void transpose8rS32_reversed_diagonale(unsigned char* A, int m, int n, unsigned char* B) |
| | | { |
| | | unsigned x, y, t; |
| | | |
| | | // Load the array and pack it into x and y. |
| | | x = (A[0] << 24) | (A[m] << 16) | (A[2 * m] << 8) | A[3 * m]; |
| | | y = (A[4 * m] << 24) | (A[5 * m] << 16) | (A[6 * m] << 8) | A[7 * m]; |
| | | |
| | | t = (x ^ (x >> 7)) & 0x00AA00AA; x = x ^ t ^ (t << 7); |
| | | t = (y ^ (y >> 7)) & 0x00AA00AA; y = y ^ t ^ (t << 7); |
| | | |
| | | t = (x ^ (x >> 14)) & 0x0000CCCC; x = x ^ t ^ (t << 14); |
| | | t = (y ^ (y >> 14)) & 0x0000CCCC; y = y ^ t ^ (t << 14); |
| | | |
| | | t = (x & 0xF0F0F0F0) | ((y >> 4) & 0x0F0F0F0F); |
| | | y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F); |
| | | x = t; |
| | | |
| | | B[7 * n] = reverse_byte(x >> 24); B[6 * n] = reverse_byte(x >> 16); B[5 * n] = reverse_byte(x >> 8); B[4 * n] = reverse_byte(x); |
| | | B[3 * n] = reverse_byte(y >> 24); B[2 * n] = reverse_byte(y >> 16); B[1 * n] = reverse_byte(y >> 8); B[0 * n] = reverse_byte(y); |
| | | } |
| | | |
| | | void transpose_bin(char *A, char *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += 8) { |
| | | int j; |
| | | for (j = 0; j < m - 8; j += 8) { |
| | | int a_index = i*lda + j; |
| | | int b_index = j*ldb + i; |
| | | //transpose_8x8_bits_my(&A[a_index/8], &B[b_index/8], lda/8, ldb/8); |
| | | transpose8rS32_reversed_diagonale(&A[a_index / 8], lda / 8, ldb / 8, &B[b_index / 8]); |
| | | } |
| | | for (; j < m; ++j) { |
| | | if (get_bit(A, i*lda + j)) set_bit(B, j*ldb + i); |
| | | } |
| | | } |
| | | } |
| | | |
| | | //---------------------------- |
| | | |
| | | |
| | | #if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64) |
| | | |
| | | #ifdef _WIN64 |
| | | #include <intrin.h> |
| | | #include <ammintrin.h> |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | |
| | | #if defined(_MSC_VER) && _MSC_VER <= 1900 |
| | | static inline __int32 _mm256_extract_epi64(__m256i a, const int index) { |
| | | return a.m256i_i64[index]; |
| | | } |
| | | |
| | | static inline __int32 _mm256_extract_epi32(__m256i a, const int index) { |
| | | return a.m256i_i32[index]; |
| | | } |
| | | #endif |
| | | |
| | | static inline float _castu32_f32(uint32_t a) { |
| | | return *((float *)&a); |
| | | } |
| | | |
| | | static inline float _mm256_extract_float32(__m256 a, const int index) { |
| | | return a.m256_f32[index]; |
| | | } |
| | | |
| | | #else // Linux GCC/Clang |
| | | #include <x86intrin.h> |
| | | #include <ammintrin.h> |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | #include <cpuid.h> |
| | | |
| | | static inline float _castu32_f32(uint32_t a) { |
| | | return *((float *)&a); |
| | | } |
| | | |
| | | static inline float _mm256_extract_float32(__m256 a, const int index) { |
| | | return _castu32_f32(_mm256_extract_epi32(_mm256_castps_si256(a), index)); |
| | | } |
| | | |
| | | void asm_cpuid(uint32_t* abcd, uint32_t eax) |
| | | { |
| | | uint32_t ebx = 0, edx = 0, ecx = 0; |
| | | |
| | | // EBX is saved to EDI and later restored |
| | | __asm__("movl %%ebx, %%edi;" |
| | | "cpuid;" |
| | | "xchgl %%ebx, %%edi;" |
| | | : "=D"(ebx), |
| | | "+a"(eax), "+c"(ecx), "=d"(edx)); |
| | | |
| | | abcd[0] = eax; |
| | | abcd[1] = ebx; |
| | | abcd[2] = ecx; |
| | | abcd[3] = edx; |
| | | } |
| | | #endif |
| | | |
| | | |
| | | |
| | | #ifdef _WIN32 |
| | | // Windows |
| | | #define cpuid(info, x) __cpuidex(info, x, 0) |
| | | #else |
| | | // GCC Intrinsics |
| | | void cpuid(int info[4], int InfoType) { |
| | | __cpuid_count(InfoType, 0, info[0], info[1], info[2], info[3]); |
| | | } |
| | | #endif |
| | | |
| | | |
| | | // Misc. |
| | | static int HW_MMX, HW_x64, HW_RDRAND, HW_BMI1, HW_BMI2, HW_ADX, HW_PREFETCHWT1; |
| | | static int HW_ABM; // Advanced Bit Manipulation |
| | | |
| | | // SIMD: 128-bit |
| | | static int HW_SSE, HW_SSE2, HW_SSE3, HW_SSSE3, HW_SSE41, HW_SSE42, HW_SSE4a, HW_AES, HW_SHA; |
| | | |
| | | // SIMD: 256-bit |
| | | static int HW_AVX, HW_XOP, HW_FMA3, HW_FMA4, HW_AVX2; |
| | | |
| | | // SIMD: 512-bit |
| | | static int HW_AVX512F; // AVX512 Foundation |
| | | static int HW_AVX512CD; // AVX512 Conflict Detection |
| | | static int HW_AVX512PF; // AVX512 Prefetch |
| | | static int HW_AVX512ER; // AVX512 Exponential + Reciprocal |
| | | static int HW_AVX512VL; // AVX512 Vector Length Extensions |
| | | static int HW_AVX512BW; // AVX512 Byte + Word |
| | | static int HW_AVX512DQ; // AVX512 Doubleword + Quadword |
| | | static int HW_AVX512IFMA; // AVX512 Integer 52-bit Fused Multiply-Add |
| | | static int HW_AVX512VBMI; // AVX512 Vector Byte Manipulation Instructions |
| | | |
| | | // https://stackoverflow.com/questions/6121792/how-to-check-if-a-cpu-supports-the-sse3-instruction-set |
| | | void check_cpu_features(void) { |
| | | int info[4]; |
| | | cpuid(info, 0); |
| | | int nIds = info[0]; |
| | | |
| | | cpuid(info, 0x80000000); |
| | | unsigned nExIds = info[0]; |
| | | |
| | | // Detect Features |
| | | if (nIds >= 0x00000001) { |
| | | cpuid(info, 0x00000001); |
| | | HW_MMX = (info[3] & ((int)1 << 23)) != 0; |
| | | HW_SSE = (info[3] & ((int)1 << 25)) != 0; |
| | | HW_SSE2 = (info[3] & ((int)1 << 26)) != 0; |
| | | HW_SSE3 = (info[2] & ((int)1 << 0)) != 0; |
| | | |
| | | HW_SSSE3 = (info[2] & ((int)1 << 9)) != 0; |
| | | HW_SSE41 = (info[2] & ((int)1 << 19)) != 0; |
| | | HW_SSE42 = (info[2] & ((int)1 << 20)) != 0; |
| | | HW_AES = (info[2] & ((int)1 << 25)) != 0; |
| | | |
| | | HW_AVX = (info[2] & ((int)1 << 28)) != 0; |
| | | HW_FMA3 = (info[2] & ((int)1 << 12)) != 0; |
| | | |
| | | HW_RDRAND = (info[2] & ((int)1 << 30)) != 0; |
| | | } |
| | | if (nIds >= 0x00000007) { |
| | | cpuid(info, 0x00000007); |
| | | HW_AVX2 = (info[1] & ((int)1 << 5)) != 0; |
| | | |
| | | HW_BMI1 = (info[1] & ((int)1 << 3)) != 0; |
| | | HW_BMI2 = (info[1] & ((int)1 << 8)) != 0; |
| | | HW_ADX = (info[1] & ((int)1 << 19)) != 0; |
| | | HW_SHA = (info[1] & ((int)1 << 29)) != 0; |
| | | HW_PREFETCHWT1 = (info[2] & ((int)1 << 0)) != 0; |
| | | |
| | | HW_AVX512F = (info[1] & ((int)1 << 16)) != 0; |
| | | HW_AVX512CD = (info[1] & ((int)1 << 28)) != 0; |
| | | HW_AVX512PF = (info[1] & ((int)1 << 26)) != 0; |
| | | HW_AVX512ER = (info[1] & ((int)1 << 27)) != 0; |
| | | HW_AVX512VL = (info[1] & ((int)1 << 31)) != 0; |
| | | HW_AVX512BW = (info[1] & ((int)1 << 30)) != 0; |
| | | HW_AVX512DQ = (info[1] & ((int)1 << 17)) != 0; |
| | | HW_AVX512IFMA = (info[1] & ((int)1 << 21)) != 0; |
| | | HW_AVX512VBMI = (info[2] & ((int)1 << 1)) != 0; |
| | | } |
| | | if (nExIds >= 0x80000001) { |
| | | cpuid(info, 0x80000001); |
| | | HW_x64 = (info[3] & ((int)1 << 29)) != 0; |
| | | HW_ABM = (info[2] & ((int)1 << 5)) != 0; |
| | | HW_SSE4a = (info[2] & ((int)1 << 6)) != 0; |
| | | HW_FMA4 = (info[2] & ((int)1 << 16)) != 0; |
| | | HW_XOP = (info[2] & ((int)1 << 11)) != 0; |
| | | } |
| | | } |
| | | |
| | | int is_avx() { |
| | | static int result = -1; |
| | | if (result == -1) { |
| | | check_cpu_features(); |
| | | result = HW_AVX; |
| | | if (result == 1) printf(" Used AVX \n"); |
| | | else printf(" Not used AVX \n"); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | int is_fma_avx2() { |
| | | static int result = -1; |
| | | if (result == -1) { |
| | | check_cpu_features(); |
| | | result = HW_FMA3 && HW_AVX2; |
| | | if (result == 1) printf(" Used FMA & AVX2 \n"); |
| | | else printf(" Not used FMA & AVX2 \n"); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | // https://software.intel.com/sites/landingpage/IntrinsicsGuide |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | if (is_avx() == 1) { // AVX |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | float A_PART = ALPHA*A[i*lda + k]; |
| | | __m256 a256, b256, c256, result256; // AVX |
| | | a256 = _mm256_set1_ps(A_PART); |
| | | for (j = 0; j < N - 8; j += 8) { |
| | | b256 = _mm256_loadu_ps(&B[k*ldb + j]); |
| | | c256 = _mm256_loadu_ps(&C[i*ldc + j]); |
| | | // FMA - Intel Haswell (2013), AMD Piledriver (2012) |
| | | //result256 = _mm256_fmadd_ps(a256, b256, c256); |
| | | result256 = _mm256_mul_ps(a256, b256); |
| | | result256 = _mm256_add_ps(result256, c256); |
| | | _mm256_storeu_ps(&C[i*ldc + j], result256); |
| | | } |
| | | |
| | | int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8; |
| | | for (j = prev_end; j < N; ++j) |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | /* // SSE |
| | | __m128 a128, b128, c128, result128; // SSE |
| | | a128 = _mm_set1_ps(A_PART); |
| | | for (j = 0; j < N - 4; j += 4) { |
| | | b128 = _mm_loadu_ps(&B[k*ldb + j]); |
| | | c128 = _mm_loadu_ps(&C[i*ldc + j]); |
| | | //result128 = _mm_fmadd_ps(a128, b128, c128); |
| | | result128 = _mm_mul_ps(a128, b128); |
| | | result128 = _mm_add_ps(result128, c128); |
| | | _mm_storeu_ps(&C[i*ldc + j], result128); |
| | | } |
| | | |
| | | int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4; |
| | | for (j = prev_end; j < N; ++j){ |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | */ |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_nt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | |
| | | void convolution_2d_old(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |
| | | int i, f, j; |
| | | |
| | | int fil; |
| | | // filter index |
| | | #pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP |
| | | for (fil = 0; fil < n; ++fil) { |
| | | int chan, y, x, f_y, f_x; |
| | | // channel index |
| | | for (chan = 0; chan < c; ++chan) |
| | | // input - y |
| | | for (y = 0; y < h; ++y) |
| | | // input - x |
| | | for (x = 0; x < w; ++x) |
| | | { |
| | | int const output_index = fil*w*h + y*w + x; |
| | | int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize; |
| | | int const input_pre_index = chan*w*h; |
| | | float sum = 0; |
| | | |
| | | // filter - y |
| | | for (f_y = 0; f_y < ksize; ++f_y) |
| | | { |
| | | int input_y = y + f_y - pad; |
| | | // filter - x |
| | | for (f_x = 0; f_x < ksize; ++f_x) |
| | | { |
| | | int input_x = x + f_x - pad; |
| | | if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue; |
| | | |
| | | int input_index = input_pre_index + input_y*w + input_x; |
| | | int weights_index = weights_pre_index + f_y*ksize + f_x; |
| | | |
| | | sum += input[input_index] * weights[weights_index]; |
| | | } |
| | | } |
| | | // l.output[filters][width][height] += |
| | | // state.input[channels][width][height] * |
| | | // l.weights[filters][channels][filter_width][filter_height]; |
| | | output[output_index] += sum; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output, float *mean) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |
| | | int i, f, j; |
| | | |
| | | #if defined(_OPENMP) |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | //omp_set_num_threads( max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | | //convolution_2d_old(w, h, ksize, n, c, pad, stride, weights, input, output); |
| | | |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | for (i = 0; i < ksize*ksize*n*c; i+=8) { |
| | | *((__m256*)&weights[i]) = _mm256_and_ps(*((__m256*)&weights[i]), _mm256_castsi256_ps(all256_sing1)); |
| | | } |
| | | |
| | | for (i = 0; i < w*h*c; i += 8) { |
| | | //*((__m256*)&input[i]) = _mm256_and_ps(*((__m256*)&input[i]), _mm256_castsi256_ps(all256_sing1)); |
| | | } |
| | | |
| | | |
| | | //__m256i all256_last_zero = _mm256_set1_epi32(0xFFFFFFFF); |
| | | //all256_last_zero.m256i_i32[7] = 0; |
| | | __m256i all256_last_zero = |
| | | _mm256_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0); |
| | | |
| | | __m256i idx256 = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1); |
| | | //__m256 all256_sing1 = _mm256_set1_ps(0x80000000); |
| | | __m256 all256_one = _mm256_set1_ps(1); |
| | | __m256i all256i_one = _mm256_set1_epi32(1); |
| | | |
| | | ///__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | ///__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | int fil; |
| | | // filter index |
| | | #pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP |
| | | for (fil = 0; fil < n; ++fil) { |
| | | int chan, y, x, f_y, f_x; |
| | | float cur_mean = fabs(mean[fil]); |
| | | __m256 mean256 = _mm256_set1_ps(cur_mean); |
| | | // channel index |
| | | //for (chan = 0; chan < c; ++chan) |
| | | // input - y |
| | | for (y = 0; y < h; ++y) |
| | | // input - x |
| | | for (x = 0; x < w-8; x+=8) |
| | | { |
| | | int const output_index = fil*w*h + y*w + x; |
| | | float sum = 0; |
| | | __m256 sum256 = _mm256_set1_ps(0); |
| | | |
| | | for (chan = 0; chan < c; ++chan) { |
| | | int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize; |
| | | int const input_pre_index = chan*w*h; |
| | | |
| | | |
| | | // filter - y |
| | | for (f_y = 0; f_y < ksize; ++f_y) |
| | | { |
| | | int input_y = y + f_y - pad; |
| | | //__m256 in = *((__m256*)&input[input_pre_index + input_y*w]); |
| | | if (input_y < 0 || input_y >= h) continue; |
| | | //__m256 in = _mm256_loadu_ps(&input[input_pre_index + input_y*w + x - pad]); |
| | | |
| | | // filter - x |
| | | for (f_x = 0; f_x < ksize; ++f_x) |
| | | { |
| | | int input_x = x + f_x - pad; |
| | | //if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue; |
| | | |
| | | int input_index = input_pre_index + input_y*w + input_x; |
| | | int weights_index = weights_pre_index + f_y*ksize + f_x; |
| | | //if (input_y < 0 || input_y >= h) continue; |
| | | |
| | | //sum += input[input_index] * weights[weights_index]; |
| | | |
| | | __m256 in = *((__m256*)&input[input_index]); |
| | | __m256 w = _mm256_set1_ps(weights[weights_index]); |
| | | //__m256 w_sign = _mm256_and_ps(w, _mm256_castsi256_ps(all256_sing1)); // check sign in 8 x 32-bit floats |
| | | __m256 xor256 = _mm256_xor_ps(w, in); |
| | | //printf("\n xor256_1 = %f, xor256_2 = %f \n", xor256.m256_f32[0], xor256.m256_f32[1]); |
| | | //printf("\n in = %f, w = %f, xor256 = %f \n", in.m256_f32[0], w_sign.m256_f32[0], xor256.m256_f32[0]); |
| | | |
| | | //__m256 pn1 = _mm256_and_ps(_mm256_castsi256_ps(all256i_one), xor256); |
| | | |
| | | |
| | | //sum256 = xor256; |
| | | sum256 = _mm256_add_ps(xor256, sum256); |
| | | //printf("\n --- \n"); |
| | | //printf("\n 0 = %f, 1 = %f, 2 = %f, 3 = %f, 4 = %f, 5 = %f, 6 = %f, 7 = %f \n", in.m256_f32[0], in.m256_f32[1], in.m256_f32[2], in.m256_f32[3], in.m256_f32[4], in.m256_f32[5], in.m256_f32[6], in.m256_f32[7]); |
| | | |
| | | if (f_x < ksize-1) { |
| | | //in = _mm256_permutevar8x32_ps(in, idx256); |
| | | //in = _mm256_and_ps(in, _mm256_castsi256_ps(all256_last_zero)); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | // l.output[filters][width][height] += |
| | | // state.input[channels][width][height] * |
| | | // l.weights[filters][channels][filter_width][filter_height]; |
| | | //output[output_index] += sum; |
| | | |
| | | sum256 = _mm256_mul_ps(sum256, mean256); |
| | | //printf("\n cur_mean = %f, sum256 = %f, sum256 = %f, in = %f \n", |
| | | // cur_mean, sum256.m256_f32[0], sum256.m256_f32[1], input[input_pre_index]); |
| | | |
| | | //__m256 out = *((__m256*)&output[output_index]); |
| | | //out = _mm256_add_ps(out, sum256); |
| | | //*((__m256*)&output[output_index]) = out; |
| | | *((__m256*)&output[output_index]) = sum256; |
| | | |
| | | //_mm256_storeu_ps(&C[i*ldc + j], result256); |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | |
| | | // http://graphics.stanford.edu/~seander/bithacks.html |
| | | // https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register |
| | | // https://arxiv.org/pdf/1611.07612.pdf |
| | | |
| | | static inline int popcnt128(__m128i n) { |
| | | const __m128i n_hi = _mm_unpackhi_epi64(n, n); |
| | | #ifdef _MSC_VER |
| | | return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi)); |
| | | #else |
| | | return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi)); |
| | | #endif |
| | | } |
| | | |
| | | static inline int popcnt256(__m256i n) { |
| | | return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1)); |
| | | } |
| | | |
| | | static inline __m256i count256(__m256i v) { |
| | | __m256i lookup = |
| | | _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, |
| | | 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3, |
| | | 1, 2, 2, 3, 2, 3, 3, 4); |
| | | |
| | | __m256i low_mask = _mm256_set1_epi8(0x0f); |
| | | |
| | | __m256i lo = _mm256_and_si256(v, low_mask); |
| | | __m256i hi = _mm256_and_si256(_mm256_srli_epi32(v, 4), low_mask); |
| | | __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo); |
| | | __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi); |
| | | __m256i total = _mm256_add_epi8(popcnt1, popcnt2); |
| | | |
| | | return _mm256_sad_epu8(total, _mm256_setzero_si256()); |
| | | } |
| | | |
| | | static inline int popcnt256_custom(__m256i n) { |
| | | __m256i val = count256(n); |
| | | |
| | | //return val.m256i_i64[0] + |
| | | //val.m256i_i64[1] + |
| | | //val.m256i_i64[2] + |
| | | //val.m256i_i64[3]; |
| | | return _mm256_extract_epi64(val, 0) |
| | | + _mm256_extract_epi64(val, 1) |
| | | + _mm256_extract_epi64(val, 2) |
| | | + _mm256_extract_epi64(val, 3); |
| | | } |
| | | |
| | | // 5x times faster than gemm()-float32 |
| | | // further optimizations: do mean-mult only for the last layer |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i; |
| | | |
| | | #if defined(_OPENMP) |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | //omp_set_num_threads(max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) |
| | | { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | int j, k; |
| | | __m256i all_1 = _mm256_set1_epi8(255); |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | const int bit_step = 256; |
| | | __m256i count_sum = _mm256_set1_epi8(0); |
| | | |
| | | for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8)); |
| | | __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8)); |
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); // xnor = not(xor(a,b)) |
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); // can be optimized - we can do other NOT for wegihts once and do not do this NOT |
| | | |
| | | count_sum = _mm256_add_epi64(count256(c_bit256), count_sum); // MulaÂ’s algorithm |
| | | |
| | | //count += popcnt256(c_bit256); |
| | | |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | // count of 1 bits |
| | | //count = count_sum.m256i_i64[0] + |
| | | // count_sum.m256i_i64[1] + |
| | | // count_sum.m256i_i64[2] + |
| | | // count_sum.m256i_i64[3]; |
| | | count = _mm256_extract_epi64(count_sum, 0) |
| | | + _mm256_extract_epi64(count_sum, 1) |
| | | + _mm256_extract_epi64(count_sum, 2) |
| | | + _mm256_extract_epi64(count_sum, 3); |
| | | |
| | | int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step)); |
| | | count = count - f1; // remove extra bits (from empty space for align only) |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | static inline float im2col_get_pixel(float *im, int height, int width, int channels, |
| | | int row, int col, int channel, int pad) |
| | | { |
| | | row -= pad; |
| | | col -= pad; |
| | | |
| | | if (row < 0 || col < 0 || |
| | | row >= height || col >= width) return 0; |
| | | return im[col + width*(row + height*channel)]; |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_transpose(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int ldb_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 4; w+=8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | data_col[col_index + ldb_align * 0] = _mm256_extract_float32(src256, 0);// src256.m256_f32[0]; |
| | | data_col[col_index + ldb_align * 1] = _mm256_extract_float32(src256, 1);// src256.m256_f32[1]; |
| | | data_col[col_index + ldb_align * 2] = _mm256_extract_float32(src256, 2);// src256.m256_f32[2]; |
| | | data_col[col_index + ldb_align * 3] = _mm256_extract_float32(src256, 3);// src256.m256_f32[3]; |
| | | data_col[col_index + ldb_align * 4] = _mm256_extract_float32(src256, 4);// src256.m256_f32[4]; |
| | | data_col[col_index + ldb_align * 5] = _mm256_extract_float32(src256, 5);// src256.m256_f32[5]; |
| | | data_col[col_index + ldb_align * 6] = _mm256_extract_float32(src256, 6);// src256.m256_f32[6]; |
| | | data_col[col_index + ldb_align * 7] = _mm256_extract_float32(src256, 7);// src256.m256_f32[7]; |
| | | |
| | | //_mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = 0; h < height_col; ++h) { |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h * stride; |
| | | int im_col = w_offset + w * stride; |
| | | |
| | | int col_index = (h * width_col + w)*ldb_align + c; // transposed & aligned |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col) |
| | | { |
| | | |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2()) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col-pad; ++h) { |
| | | for (w = pad; w < width_col-pad-8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | _mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col-1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col-1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | //printf("\n Error: is no non-optimized version \n"); |
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | } |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_align(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2()) |
| | | { |
| | | int new_ldb = bit_align; |
| | | |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | _mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | printf("\n Error: is no non-optimized version \n"); |
| | | //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin |
| | | // float_to_bit(b, t_input, src_size); |
| | | // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | } |
| | | } |
| | | |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_bin(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2()) |
| | | { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 float_zero256 = _mm256_set1_ps(0.00); |
| | | |
| | | int new_ldb = bit_align; |
| | | |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //__m256i src256 = _mm256_loadu_si256((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | //__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //uint16_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | //mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | __m256 result256 = _mm256_cmp_ps(src256, float_zero256, _CMP_GT_OS); |
| | | uint16_t mask = _mm256_movemask_ps(result256); // (val > 0) ? 0 : 1 |
| | | |
| | | uint16_t *dst_ptr = &((unsigned char*)data_col)[col_index / 8]; |
| | | *dst_ptr |= (mask << (col_index % 8)); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | float val = data_im[im_col + width*(im_row + height*c_im)]; |
| | | if(val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | printf("\n Error: is no non-optimized version \n"); |
| | | //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin |
| | | // float_to_bit(b, t_input, src_size); |
| | | // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | } |
| | | } |
| | | |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i = 0; |
| | | if (a == LINEAR) |
| | | {} |
| | | else if (a == LEAKY) |
| | | { |
| | | if (is_fma_avx2()) { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 all256_01 = _mm256_set1_ps(0.1F); |
| | | |
| | | for (i = 0; i < n - 8; i += 8) { |
| | | //x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps(&x[i]); |
| | | __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1 |
| | | |
| | | __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult; |
| | | _mm256_storeu_ps(&x[i], result256); |
| | | } |
| | | } |
| | | |
| | | for (; i < n; ++i) { |
| | | x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = activate(x[i], a); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) |
| | | { |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | |
| | | size_t i; |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 float_zero256 = _mm256_set1_ps(0.0); |
| | | |
| | | for (i = 0; i < size; i+=8) |
| | | { |
| | | //__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | //__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | ////mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&src[i])); |
| | | __m256 result256 = _mm256_cmp_ps(src256, float_zero256, _CMP_GT_OS); |
| | | uint32_t mask = _mm256_movemask_ps(result256); // (val > 0) ? 0 : 1 |
| | | |
| | | dst[i / 8] = mask; |
| | | } |
| | | } |
| | | |
| | | static inline void transpose4x4_SSE(float *A, float *B, const int lda, const int ldb) |
| | | { |
| | | __m128 row1 = _mm_loadu_ps(&A[0 * lda]); |
| | | __m128 row2 = _mm_loadu_ps(&A[1 * lda]); |
| | | __m128 row3 = _mm_loadu_ps(&A[2 * lda]); |
| | | __m128 row4 = _mm_loadu_ps(&A[3 * lda]); |
| | | _MM_TRANSPOSE4_PS(row1, row2, row3, row4); |
| | | _mm_storeu_ps(&B[0 * ldb], row1); |
| | | _mm_storeu_ps(&B[1 * ldb], row2); |
| | | _mm_storeu_ps(&B[2 * ldb], row3); |
| | | _mm_storeu_ps(&B[3 * ldb], row4); |
| | | } |
| | | |
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += block_size) { |
| | | int j, i2, j2; |
| | | //int max_i2 = (i + block_size < n) ? (i + block_size) : n; |
| | | if (i + block_size < n) { |
| | | int max_i2 = i + block_size; |
| | | for (j = 0; j < m; j += block_size) { |
| | | //int max_j2 = (j + block_size < m) ? (j + block_size) : m; |
| | | if (j + block_size < m) { |
| | | int max_j2 = j + block_size; |
| | | for (i2 = i; i2 < max_i2; i2 += 4) { |
| | | for (j2 = j; j2 < max_j2; j2 += 4) { |
| | | transpose4x4_SSE(&A[i2*lda + j2], &B[j2*ldb + i2], lda, ldb); |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i2 = i; i2 < max_i2; ++i2) { |
| | | for (j2 = j; j2 < m; ++j2) { |
| | | B[j2*ldb + i2] = A[i2*lda + j2]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i2 = i; i2 < n; ++i2) { |
| | | for (j2 = 0; j2 < m; ++j2) { |
| | | B[j2*ldb + i2] = A[i2*lda + j2]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, int w, int h, int out_w, int out_h, int c, |
| | | int pad, int stride, int batch) |
| | | { |
| | | |
| | | int w_offset = -pad / 2; |
| | | int h_offset = -pad / 2; |
| | | int b, k; |
| | | |
| | | for (b = 0; b < batch; ++b) { |
| | | #pragma omp parallel for |
| | | for (k = 0; k < c; ++k) { |
| | | int i, j, m, n; |
| | | for (i = 0; i < out_h; ++i) { |
| | | //for (j = 0; j < out_w; ++j) { |
| | | j = 0; |
| | | |
| | | if(stride == 1 && is_avx() == 1) { |
| | | for (j = 0; j < out_w - 8 - (size - 1); j += 8) { |
| | | int out_index = j + out_w*(i + out_h*(k + c*b)); |
| | | __m256 max256 = _mm256_set1_ps(-FLT_MAX); |
| | | for (n = 0; n < size; ++n) { |
| | | for (m = 0; m < size; ++m) { |
| | | int cur_h = h_offset + i*stride + n; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + w*(cur_h + h*(k + b*c)); |
| | | int valid = (cur_h >= 0 && cur_h < h && |
| | | cur_w >= 0 && cur_w < w); |
| | | if (!valid) continue; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps(&src[index]); |
| | | max256 = _mm256_max_ps(src256, max256); |
| | | } |
| | | } |
| | | _mm256_storeu_ps(&dst[out_index], max256); |
| | | |
| | | } |
| | | } |
| | | else if (size == 2 && stride == 2 && is_avx() == 1) { |
| | | for (j = 0; j < out_w - 4; j += 4) { |
| | | int out_index = j + out_w*(i + out_h*(k + c*b)); |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | __m128 max128 = _mm_set1_ps(-FLT_MAX); |
| | | |
| | | for (n = 0; n < size; ++n) { |
| | | //for (m = 0; m < size; ++m) |
| | | m = 0; |
| | | { |
| | | int cur_h = h_offset + i*stride + n; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + w*(cur_h + h*(k + b*c)); |
| | | int valid = (cur_h >= 0 && cur_h < h && |
| | | cur_w >= 0 && cur_w < w); |
| | | if (!valid) continue; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps(&src[index]); |
| | | __m256 src256_2 = _mm256_permute_ps(src256, (1 << 0) | (3 << 4)); |
| | | __m256 max256 = _mm256_max_ps(src256, src256_2); |
| | | |
| | | __m128 src128_0 = _mm256_extractf128_ps(max256, 0); |
| | | __m128 src128_1 = _mm256_extractf128_ps(max256, 1); |
| | | __m128 src128 = _mm_shuffle_ps(src128_0, src128_1, (2 << 2) | (2 << 6)); |
| | | |
| | | max128 = _mm_max_ps(src128, max128); |
| | | } |
| | | } |
| | | _mm_storeu_ps(&dst[out_index], max128); |
| | | } |
| | | } |
| | | |
| | | for (; j < out_w; ++j) { |
| | | int out_index = j + out_w*(i + out_h*(k + c*b)); |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | for (n = 0; n < size; ++n) { |
| | | for (m = 0; m < size; ++m) { |
| | | int cur_h = h_offset + i*stride + n; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + w*(cur_h + h*(k + b*c)); |
| | | int valid = (cur_h >= 0 && cur_h < h && |
| | | cur_w >= 0 && cur_w < w); |
| | | float val = (valid != 0) ? src[index] : -FLT_MAX; |
| | | max_i = (val > max) ? index : max_i; |
| | | max = (val > max) ? val : max; |
| | | } |
| | | } |
| | | dst[out_index] = max; |
| | | indexes[out_index] = max_i; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | #else |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output, float *mean) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |
| | | int i, f, j; |
| | | |
| | | int fil; |
| | | // filter index |
| | | #pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP |
| | | for (fil = 0; fil < n; ++fil) { |
| | | int chan, y, x, f_y, f_x; |
| | | // channel index |
| | | for (chan = 0; chan < c; ++chan) |
| | | // input - y |
| | | for (y = 0; y < h; ++y) |
| | | // input - x |
| | | for (x = 0; x < w; ++x) |
| | | { |
| | | int const output_index = fil*w*h + y*w + x; |
| | | int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize; |
| | | int const input_pre_index = chan*w*h; |
| | | float sum = 0; |
| | | |
| | | // filter - y |
| | | for (f_y = 0; f_y < ksize; ++f_y) |
| | | { |
| | | int input_y = y + f_y - pad; |
| | | // filter - x |
| | | for (f_x = 0; f_x < ksize; ++f_x) |
| | | { |
| | | int input_x = x + f_x - pad; |
| | | if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue; |
| | | |
| | | int input_index = input_pre_index + input_y*w + input_x; |
| | | int weights_index = weights_pre_index + f_y*ksize + f_x; |
| | | |
| | | sum += input[input_index] * weights[weights_index]; |
| | | } |
| | | } |
| | | // l.output[filters][width][height] += |
| | | // state.input[channels][width][height] * |
| | | // l.weights[filters][channels][filter_width][filter_height]; |
| | | output[output_index] += sum; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | |
| | | for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | |
| | | #ifdef WIN32 |
| | | int tmp_count = __popcnt64(c_bit64); |
| | | #else |
| | | int tmp_count = __builtin_popcountll(c_bit64); |
| | | #endif |
| | | |
| | | if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits |
| | | count += tmp_count; |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void im2col_cpu_custom_transpose(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int ldb_align) |
| | | { |
| | | printf("\n im2col_cpu_custom_transpose() isn't implemented without AVX \n"); |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col) |
| | | { |
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | return; |
| | | |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | //printf("\n Error: is no non-optimized version \n"); |
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | } |
| | | } |
| | | |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_bin(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | int new_ldb = bit_align; |
| | | |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 8; w += 1) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | float val = data_im[im_col + width*(im_row + height*c_im)]; |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | float val = data_im[im_col + width*(im_row + height*c_im)]; |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | printf("\n Error: is no non-optimized version \n"); |
| | | //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin |
| | | // float_to_bit(b, t_input, src_size); |
| | | // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | } |
| | | } |
| | | |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i; |
| | | if (a == LINEAR) |
| | | { |
| | | } |
| | | else if (a == LEAKY) |
| | | { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = activate(x[i], a); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) |
| | | { |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | |
| | | size_t i; |
| | | char *byte_arr = calloc(size, sizeof(char)); |
| | | for (i = 0; i < size; ++i) { |
| | | if (src[i] > 0) byte_arr[i] = 1; |
| | | } |
| | | |
| | | //for (i = 0; i < size; ++i) { |
| | | // dst[i / 8] |= byte_arr[i] << (i % 8); |
| | | //} |
| | | |
| | | for (i = 0; i < size; i += 8) { |
| | | char dst_tmp = 0; |
| | | dst_tmp |= byte_arr[i + 0] << 0; |
| | | dst_tmp |= byte_arr[i + 1] << 1; |
| | | dst_tmp |= byte_arr[i + 2] << 2; |
| | | dst_tmp |= byte_arr[i + 3] << 3; |
| | | dst_tmp |= byte_arr[i + 4] << 4; |
| | | dst_tmp |= byte_arr[i + 5] << 5; |
| | | dst_tmp |= byte_arr[i + 6] << 6; |
| | | dst_tmp |= byte_arr[i + 7] << 7; |
| | | dst[i / 8] = dst_tmp; |
| | | } |
| | | free(byte_arr); |
| | | } |
| | | |
| | | static inline void transpose_scalar_block(float *A, float *B, const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i, j; |
| | | //#pragma omp parallel for |
| | | for (i = 0; i<block_size; i++) { |
| | | for (j = 0; j<block_size; j++) { |
| | | B[j*ldb + i] = A[i*lda + j]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += block_size) { |
| | | int j, i2, j2; |
| | | for (j = 0; j < m; j += block_size) { |
| | | int max_i2 = i + block_size < n ? i + block_size : n; |
| | | int max_j2 = j + block_size < m ? j + block_size : m; |
| | | for (i2 = i; i2 < max_i2; ++i2) { |
| | | for (j2 = j; j2 < max_j2; ++j2) { |
| | | B[j2*ldb + i2] = A[i2*lda + j2]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, int w, int h, int out_w, int out_h, int c, |
| | | int pad, int stride, int batch) |
| | | { |
| | | int b, k; |
| | | int w_offset = -pad / 2; |
| | | int h_offset = -pad / 2; |
| | | |
| | | for (b = 0; b < batch; ++b) { |
| | | #pragma omp parallel for |
| | | for (k = 0; k < c; ++k) { |
| | | int i, j, m, n; |
| | | for (i = 0; i < out_h; ++i) { |
| | | for (j = 0; j < out_w; ++j) { |
| | | int out_index = j + out_w*(i + out_h*(k + c*b)); |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | for (n = 0; n < size; ++n) { |
| | | for (m = 0; m < size; ++m) { |
| | | int cur_h = h_offset + i*stride + n; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + w*(cur_h + h*(k + b*c)); |
| | | int valid = (cur_h >= 0 && cur_h < h && |
| | | cur_w >= 0 && cur_w < w); |
| | | float val = (valid != 0) ? src[index] : -FLT_MAX; |
| | | max_i = (val > max) ? index : max_i; |
| | | max = (val > max) ? val : max; |
| | | } |
| | | } |
| | | dst[out_index] = max; |
| | | indexes[out_index] = max_i; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | #endif // AVX |
| | | |
| | | void gemm_nt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | |
| | | } |
| | | } |
| | | |
| | | void gemm_tn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | void gemm_tn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | |
| | | } |
| | | } |
| | | |
| | | void gemm_tt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | void gemm_tt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | |
| | | } |
| | | |
| | | |
| | | void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); |
| | | int i, j; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc + j] *= BETA; |
| | | if (BETA != 1){ |
| | | int i, j; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc + j] *= BETA; |
| | | } |
| | | } |
| | | } |
| | | if(!TA && !TB) |
| | | gemm_nn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else if(TA && !TB) |
| | | gemm_tn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else if(!TA && TB) |
| | | gemm_nt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else |
| | | gemm_tt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | |
| | | int t; |
| | | #pragma omp parallel for |
| | | for (t = 0; t < M; ++t) { |
| | | if (!TA && !TB) |
| | | gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); |
| | | else if (TA && !TB) |
| | | gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); |
| | | else if (!TA && TB) |
| | | gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); |
| | | else |
| | | gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | #include "opencl.h" |
| | | #include <math.h> |
| | | |
| | | #define STR_HELPER(x) #x |
| | | #define STR(x) STR_HELPER(x) |
| | | |
| | | #ifdef __APPLE__ |
| | | #define BLOCK 1 |
| | | #else |
| | | #define BLOCK 8 |
| | | #endif |
| | | |
| | | cl_kernel get_gemm_kernel() |
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A_gpu, int lda, |
| | | float *B_gpu, int ldb, |
| | | float BETA, |
| | | float *C_gpu, int ldc) |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | cublasHandle_t handle = blas_handle(); |
| | | cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream()); |
| | | cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), |
| | | (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc); |
| | | check_error(status); |
| | | } |
| | | |
| | | void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc); |
| | | |
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | { |
| | | cl_setup(); |
| | | //cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, 0, lda,B_gpu, 0, ldb,BETA, C_gpu, 0, ldc,1, &queue, 0, NULL, &event); |
| | | //check_error(cl); |
| | | gemm_ongpu_old(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | } |
| | | |
| | | void gemm_ongpu_old(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | { |
| | | //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K); |
| | | cl_setup(); |
| | | cl_kernel gemm_kernel = get_gemm_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {ceil((float)M/BLOCK)*BLOCK, ceil((float)N/BLOCK)*BLOCK}; |
| | | const size_t local_size[] = {BLOCK, BLOCK}; |
| | | |
| | | clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | |
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | cl_setup(); |
| | | cl_context context = cl.context; |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | size_t size = sizeof(float)*(TA ? lda*K:lda*M); |
| | | cl_mem A_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, |
| | | size, A, &cl.error); |
| | | check_error(cl); |
| | | |
| | | size = sizeof(float)*(TB ? ldb*N:ldb*K); |
| | | cl_mem B_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, |
| | | size, B, &cl.error); |
| | | check_error(cl); |
| | | |
| | | size = sizeof(float)*(ldc*M); |
| | | cl_mem C_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR, |
| | | size, C, &cl.error); |
| | | check_error(cl); |
| | | float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M)); |
| | | float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K)); |
| | | float *C_gpu = cuda_make_array(C, ldc*M); |
| | | |
| | | gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | |
| | | clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0); |
| | | check_error(cl); |
| | | |
| | | clReleaseMemObject(A_gpu); |
| | | clReleaseMemObject(B_gpu); |
| | | clReleaseMemObject(C_gpu); |
| | | cuda_pull_array(C_gpu, C, ldc*M); |
| | | cuda_free(A_gpu); |
| | | cuda_free(B_gpu); |
| | | cuda_free(C_gpu); |
| | | } |
| | | |
| | | #include <stdio.h> |
| | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<10; ++i){ |
| | | for(i = 0; i<32; ++i){ |
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | |
| | | free(c); |
| | | } |
| | | |
| | | void time_ongpu(int TA, int TB, int m, int k, int n) |
| | | { |
| | | int iter = 10; |
| | | float *a = random_matrix(m,k); |
| | | float *b = random_matrix(k,n); |
| | | |
| | | int lda = (!TA)?k:m; |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | |
| | | float *a_cl = cuda_make_array(a, m*k); |
| | | float *b_cl = cuda_make_array(b, k*n); |
| | | float *c_cl = cuda_make_array(c, m*n); |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<iter; ++i){ |
| | | gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n); |
| | | cudaThreadSynchronize(); |
| | | } |
| | | double flop = ((double)m)*n*(2.*k + 2.)*iter; |
| | | double gflop = flop/pow(10., 9); |
| | | end = clock(); |
| | | double seconds = sec(end-start); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds); |
| | | cuda_free(a_cl); |
| | | cuda_free(b_cl); |
| | | cuda_free(c_cl); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void test_gpu_accuracy(int TA, int TB, int m, int k, int n) |
| | | { |
| | | srand(0); |
| | |
| | | int i; |
| | | //pm(m,k,b); |
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n); |
| | | //printf("GPU\n"); |
| | | //pm(m, n, c_gpu); |
| | | |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | //printf("\n\nCPU\n"); |
| | | //pm(m, n, c); |
| | | double sse = 0; |
| | | for(i = 0; i < m*n; ++i) { |
| | | //printf("%f %f\n", c[i], c_gpu[i]); |
| | | sse += pow(c[i]-c_gpu[i], 2); |
| | | } |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g MSE\n",m,k,k,n, TA, TB, sse/(m*n)); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n)); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | free(c_gpu); |
| | | } |
| | | |
| | | void test_gpu_blas() |
| | | int test_gpu_blas() |
| | | { |
| | | test_gpu_accuracy(0,0,10,576,75); |
| | | |
| | | test_gpu_accuracy(0,0,17,10,10); |
| | | test_gpu_accuracy(1,0,17,10,10); |
| | | test_gpu_accuracy(0,1,17,10,10); |
| | | test_gpu_accuracy(1,1,17,10,10); |
| | | |
| | | test_gpu_accuracy(0,0,1000,10,100); |
| | | test_gpu_accuracy(1,0,1000,10,100); |
| | | test_gpu_accuracy(0,1,1000,10,100); |
| | | test_gpu_accuracy(1,1,1000,10,100); |
| | | |
| | | /* |
| | | time_gpu_random_matrix(0,0,1000,1000,100); |
| | | time_random_matrix(0,0,1000,1000,100); |
| | | test_gpu_accuracy(0,0,10,576,75); |
| | | |
| | | time_gpu_random_matrix(0,1,1000,1000,100); |
| | | time_random_matrix(0,1,1000,1000,100); |
| | | test_gpu_accuracy(0,0,17,10,10); |
| | | test_gpu_accuracy(1,0,17,10,10); |
| | | test_gpu_accuracy(0,1,17,10,10); |
| | | test_gpu_accuracy(1,1,17,10,10); |
| | | |
| | | time_gpu_random_matrix(1,0,1000,1000,100); |
| | | time_random_matrix(1,0,1000,1000,100); |
| | | test_gpu_accuracy(0,0,1000,10,100); |
| | | test_gpu_accuracy(1,0,1000,10,100); |
| | | test_gpu_accuracy(0,1,1000,10,100); |
| | | test_gpu_accuracy(1,1,1000,10,100); |
| | | |
| | | time_gpu_random_matrix(1,1,1000,1000,100); |
| | | time_random_matrix(1,1,1000,1000,100); |
| | | test_gpu_accuracy(0,0,10,10,10); |
| | | |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,192,729,1600); |
| | | time_ongpu(0,0,384,196,1728); |
| | | time_ongpu(0,0,256,196,3456); |
| | | time_ongpu(0,0,256,196,2304); |
| | | time_ongpu(0,0,128,4096,12544); |
| | | time_ongpu(0,0,128,4096,4096); |
| | | */ |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,576,12544); |
| | | time_ongpu(0,0,256,2304,784); |
| | | time_ongpu(1,1,2304,256,784); |
| | | time_ongpu(0,0,512,4608,196); |
| | | time_ongpu(1,1,4608,512,196); |
| | | |
| | | return 0; |
| | | } |
| | | #endif |
| | | |