| | |
| | | int i,j; |
| | | for(i = 0; i < batch; ++i){ |
| | | int index = rand() %(len - steps - 1); |
| | | int done = 1; |
| | | while(!done){ |
| | | index = rand() %(len - steps - 1); |
| | | while(index < len-steps-1 && text[index++] != '\n'); |
| | | if (index < len-steps-1) done = 1; |
| | | } |
| | | for(j = 0; j < steps; ++j){ |
| | | x[(j*batch + i)*256 + text[index + j]] = 1; |
| | | y[(j*batch + i)*256 + text[index + j + 1]] = 1; |
| | |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | fprintf(stderr, "%s\n", base); |
| | | float avg_loss = -1; |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int batch = net.batch; |
| | | int steps = net.time_steps; |
| | | int i = (*net.seen)/net.batch; |
| | |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time)); |
| | | fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time)); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | |
| | | { |
| | | srand(rseed); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | |
| | | printf("\n"); |
| | | } |
| | | |
| | | void valid_char_rnn(char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "r"); |
| | | //FILE *fp = fopen("data/ab.txt", "r"); |
| | | //FILE *fp = fopen("data/grrm/asoiaf.txt", "r"); |
| | | |
| | | fseek(fp, 0, SEEK_END); |
| | | size_t size = ftell(fp); |
| | | fseek(fp, 0, SEEK_SET); |
| | | |
| | | char *text = calloc(size, sizeof(char)); |
| | | fread(text, 1, size, fp); |
| | | fclose(fp); |
| | | |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | |
| | | int i; |
| | | char c; |
| | | float *input = calloc(256, sizeof(float)); |
| | | float sum = 0; |
| | | for(i = 0; i < size-1; ++i){ |
| | | c = text[i]; |
| | | input[(int)c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | sum += log(out[(int)text[i+1]]); |
| | | } |
| | | printf("Log Probability: %f\n", sum); |
| | | } |
| | | |
| | | |
| | | void run_char_rnn(int argc, char **argv) |
| | | { |
| | | if(argc < 4){ |
| | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "test")) test_char_rnn(cfg, weights, len, seed, temp, rseed); |
| | | } |