Joseph Redmon
2016-09-08 c62b4f35aa2c59d7db0fd177affeed14b1ba4bcb
src/connected_layer.c
@@ -187,7 +187,7 @@
{
    int i, j;
    for(i = 0; i < l.outputs; ++i){
        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
        float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .000001);
        for(j = 0; j < l.inputs; ++j){
            l.weights[i*l.inputs + j] *= scale;
        }
@@ -198,6 +198,23 @@
    }
}
void statistics_connected_layer(layer l)
{
    if(l.batch_normalize){
        printf("Scales ");
        print_statistics(l.scales, l.outputs);
        printf("Rolling Mean ");
        print_statistics(l.rolling_mean, l.outputs);
        printf("Rolling Variance ");
        print_statistics(l.rolling_variance, l.outputs);
    }
    printf("Biases ");
    print_statistics(l.biases, l.outputs);
    printf("Weights ");
    print_statistics(l.weights, l.outputs);
}
#ifdef GPU
void pull_connected_layer(connected_layer l)
@@ -265,7 +282,7 @@
void backward_connected_layer_gpu(connected_layer l, network_state state)
{
    int i;
    constrain_ongpu(l.outputs*l.batch, 5, l.delta_gpu, 1);
    constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
    for(i = 0; i < l.batch; ++i){
        axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);