| | |
| | | { |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= n) return; |
| | | binary[i] = (x[i] > 0) ? 1 : -1; |
| | | binary[i] = (x[i] >= 0) ? 1 : -1; |
| | | } |
| | | |
| | | void binarize_gpu(float *x, int n, float *binary) |
| | |
| | | mean = mean / size; |
| | | for(i = 0; i < size; ++i){ |
| | | binary[f*size + i] = (filters[f*size + i] > 0) ? mean : -mean; |
| | | //binary[f*size + i] = filters[f*size + i]; |
| | | } |
| | | } |
| | | |
| | |
| | | |
| | | void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | | { |
| | | int i; |
| | | int m = l.n; |
| | | int k = l.size*l.size*l.c; |
| | | int n = convolutional_out_height(l)* |
| | | convolutional_out_width(l); |
| | | |
| | | fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); |
| | | if(l.binary){ |
| | | binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu); |
| | |
| | | |
| | | if(l.xnor){ |
| | | binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu); |
| | | //binarize_gpu(l.filters_gpu, l.n*l.c*l.size*l.size, l.binary_filters_gpu); |
| | | swap_binary(&l); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | binarize_input_gpu(state.input + i*l.inputs, l.c, l.h*l.w, l.binary_input_gpu + i*l.inputs); |
| | | } |
| | | binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu); |
| | | state.input = l.binary_input_gpu; |
| | | } |
| | | |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | cudnnConvolutionForward(cudnn_handle(), |
| | | &one, |
| | | l.srcTensorDesc, |
| | | state.input, |
| | | l.filterDesc, |
| | | l.filters_gpu, |
| | | l.convDesc, |
| | | l.fw_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dstTensorDesc, |
| | | l.output_gpu); |
| | | |
| | | #else |
| | | int i; |
| | | int m = l.n; |
| | | int k = l.size*l.size*l.c; |
| | | int n = l.out_w*l.out_h; |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu); |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); |
| | | float * a = l.filters_gpu; |
| | | float * b = l.col_image_gpu; |
| | | float * b = state.workspace; |
| | | float * c = l.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n); |
| | | } |
| | | #endif |
| | | |
| | | if (l.batch_normalize) { |
| | | forward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n); |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | |
| | | activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation); |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | //if(l.dot > 0) dot_error_gpu(l); |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | } |
| | | |
| | | void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | | { |
| | | int i; |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = convolutional_out_height(l)* |
| | | convolutional_out_width(l); |
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
| | | |
| | | gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu); |
| | | |
| | | backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k); |
| | | backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | |
| | | if(l.batch_normalize){ |
| | | backward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | float *original_input = state.input; |
| | | |
| | | if(l.xnor) state.input = l.binary_input_gpu; |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | cudnnConvolutionBackwardFilter(cudnn_handle(), |
| | | &one, |
| | | l.srcTensorDesc, |
| | | state.input, |
| | | l.ddstTensorDesc, |
| | | l.delta_gpu, |
| | | l.convDesc, |
| | | l.bf_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dfilterDesc, |
| | | l.filter_updates_gpu); |
| | | |
| | | if(state.delta){ |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | cudnnConvolutionBackwardData(cudnn_handle(), |
| | | &one, |
| | | l.filterDesc, |
| | | l.filters_gpu, |
| | | l.ddstTensorDesc, |
| | | l.delta_gpu, |
| | | l.convDesc, |
| | | l.bd_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dsrcTensorDesc, |
| | | state.delta); |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); |
| | | } |
| | | |
| | | #else |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = l.out_w*l.out_h; |
| | | |
| | | int i; |
| | | for(i = 0; i < l.batch; ++i){ |
| | | float * a = l.delta_gpu; |
| | | float * b = l.col_image_gpu; |
| | | float * b = state.workspace; |
| | | float * c = l.filter_updates_gpu; |
| | | |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu); |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); |
| | | gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | float * a = l.filters_gpu; |
| | | float * b = l.delta_gpu; |
| | | float * c = l.col_image_gpu; |
| | | float * c = state.workspace; |
| | | |
| | | gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); |
| | | |
| | | col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | col2im_ongpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); |
| | | if(l.binary || l.xnor) { |
| | | swap_binary(&l); |
| | | } |
| | | if(l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w); |
| | | } |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void pull_convolutional_layer(convolutional_layer layer) |