| | |
| | | #include "region_layer.h" |
| | | #include "activations.h" |
| | | #include "softmax_layer.h" |
| | | #include "blas.h" |
| | | #include "box.h" |
| | | #include "cuda.h" |
| | |
| | | l.biases[i] = .5; |
| | | } |
| | | |
| | | l.forward = forward_region_layer; |
| | | l.backward = backward_region_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_region_layer_gpu; |
| | | l.backward_gpu = backward_region_layer_gpu; |
| | | l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
| | | #endif |
| | |
| | | return l; |
| | | } |
| | | |
| | | #define LOG 1 |
| | | |
| | | box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h) |
| | | { |
| | | box b; |
| | | b.x = (i + .5)/w + x[index + 0] * biases[2*n]; |
| | | b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1]; |
| | | if(LOG){ |
| | | b.x = (i + logistic_activate(x[index + 0])) / w; |
| | | b.y = (j + logistic_activate(x[index + 1])) / h; |
| | | } |
| | | b.w = exp(x[index + 2]) * biases[2*n]; |
| | | b.h = exp(x[index + 3]) * biases[2*n+1]; |
| | | return b; |
| | |
| | | |
| | | float tx = (truth.x - (i + .5)/w) / biases[2*n]; |
| | | float ty = (truth.y - (j + .5)/h) / biases[2*n + 1]; |
| | | if(LOG){ |
| | | tx = (truth.x*w - i); |
| | | ty = (truth.y*h - j); |
| | | } |
| | | float tw = log(truth.w / biases[2*n]); |
| | | float th = log(truth.h / biases[2*n + 1]); |
| | | |
| | | delta[index + 0] = scale * (tx - x[index + 0]); |
| | | delta[index + 1] = scale * (ty - x[index + 1]); |
| | | if(LOG){ |
| | | delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0])); |
| | | delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1])); |
| | | } |
| | | delta[index + 2] = scale * (tw - x[index + 2]); |
| | | delta[index + 3] = scale * (th - x[index + 3]); |
| | | return iou; |
| | |
| | | return (x != x); |
| | | } |
| | | |
| | | #define LOG 0 |
| | | |
| | | void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output); |
| | | void forward_region_layer(const region_layer l, network_state state) |
| | | { |
| | | int i,j,b,t,n; |
| | |
| | | for(i = 0; i < l.h*l.w*l.n; ++i){ |
| | | int index = size*i + b*l.outputs; |
| | | l.output[index + 4] = logistic_activate(l.output[index + 4]); |
| | | if(l.softmax){ |
| | | softmax_array(l.output + index + 5, l.classes, 1, l.output + index + 5); |
| | | if(l.softmax_tree){ |
| | | softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5); |
| | | } else if(l.softmax){ |
| | | softmax(l.output + index + 5, l.classes, 1, l.output + index + 5); |
| | | } |
| | | } |
| | | } |
| | |
| | | l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); |
| | | if(best_iou > .5) l.delta[index + 4] = 0; |
| | | |
| | | if(*(state.net.seen) < 6400){ |
| | | if(*(state.net.seen) < 12800){ |
| | | box truth = {0}; |
| | | truth.x = (i + .5)/l.w; |
| | | truth.y = (j + .5)/l.h; |
| | | truth.w = .5; |
| | | truth.h = .5; |
| | | truth.w = l.biases[2*n]; |
| | | truth.h = l.biases[2*n+1]; |
| | | delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01); |
| | | //l.delta[index + 0] = .1 * (0 - l.output[index + 0]); |
| | | //l.delta[index + 1] = .1 * (0 - l.output[index + 1]); |
| | |
| | | } |
| | | for(t = 0; t < 30; ++t){ |
| | | box truth = float_to_box(state.truth + t*5 + b*l.truths); |
| | | int class = state.truth[t*5 + b*l.truths + 4]; |
| | | |
| | | if(!truth.x) break; |
| | | float best_iou = 0; |
| | | int best_index = 0; |
| | |
| | | for(n = 0; n < l.n; ++n){ |
| | | int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; |
| | | box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); |
| | | printf("pred: (%f, %f) %f x %f\n", pred.x*l.w - i - .5, pred.y * l.h - j - .5, pred.w, pred.h); |
| | | if(l.bias_match){ |
| | | pred.w = l.biases[2*n]; |
| | | pred.h = l.biases[2*n+1]; |
| | | } |
| | | printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h); |
| | | pred.x = 0; |
| | | pred.y = 0; |
| | | float iou = box_iou(pred, truth_shift); |
| | |
| | | best_n = n; |
| | | } |
| | | } |
| | | printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x * l.w - i - .5, truth.y*l.h - j - .5, truth.w, truth.h); |
| | | printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h); |
| | | |
| | | float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale); |
| | | if(iou > .5) recall += 1; |
| | |
| | | if (l.rescore) { |
| | | l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]); |
| | | } |
| | | //printf("%f\n", l.delta[best_index+1]); |
| | | /* |
| | | if(isnan(l.delta[best_index+1])){ |
| | | printf("%f\n", true_scale); |
| | | printf("%f\n", l.output[best_index + 1]); |
| | | printf("%f\n", truth.w); |
| | | printf("%f\n", truth.h); |
| | | error("bad"); |
| | | } |
| | | */ |
| | | for(n = 0; n < l.classes; ++n){ |
| | | l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]); |
| | | if(n == class) avg_cat += l.output[best_index + 5 + n]; |
| | | } |
| | | /* |
| | | if(0){ |
| | | printf("truth: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h); |
| | | printf("pred: %f %f %f %f\n\n", pred.x, pred.y, pred.w, pred.h); |
| | | float aspect = exp(true_aspect); |
| | | float scale = logistic_activate(true_scale); |
| | | float move_x = true_dx; |
| | | float move_y = true_dy; |
| | | |
| | | box b; |
| | | b.w = sqrt(scale * aspect); |
| | | b.h = b.w * 1./aspect; |
| | | b.x = move_x * b.w + (i + .5)/l.w; |
| | | b.y = move_y * b.h + (j + .5)/l.h; |
| | | printf("%f %f\n", b.x, truth.x); |
| | | printf("%f %f\n", b.y, truth.y); |
| | | printf("%f %f\n", b.w, truth.w); |
| | | printf("%f %f\n", b.h, truth.h); |
| | | //printf("%f\n", box_iou(b, truth)); |
| | | |
| | | int class = state.truth[t*5 + b*l.truths + 4]; |
| | | if (l.map) class = l.map[class]; |
| | | if(l.softmax_tree){ |
| | | float pred = 1; |
| | | while(class >= 0){ |
| | | pred *= l.output[best_index + 5 + class]; |
| | | int g = l.softmax_tree->group[class]; |
| | | int i; |
| | | int offset = l.softmax_tree->group_offset[g]; |
| | | for(i = 0; i < l.softmax_tree->group_size[g]; ++i){ |
| | | int index = best_index + 5 + offset + i; |
| | | l.delta[index] = l.class_scale * (0 - l.output[index]); |
| | | } |
| | | l.delta[best_index + 5 + class] = l.class_scale * (1 - l.output[best_index + 5 + class]); |
| | | |
| | | class = l.softmax_tree->parent[class]; |
| | | } |
| | | avg_cat += pred; |
| | | } else { |
| | | for(n = 0; n < l.classes; ++n){ |
| | | l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]); |
| | | if(n == class) avg_cat += l.output[best_index + 5 + n]; |
| | | } |
| | | } |
| | | */ |
| | | ++count; |
| | | } |
| | | } |
| | |
| | | axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | { |
| | | int i,j,n; |
| | | float *predictions = l.output; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < l.w*l.h; ++i){ |
| | | int row = i / l.w; |
| | | int col = i % l.w; |
| | | for(n = 0; n < l.n; ++n){ |
| | | int index = i*l.n + n; |
| | | int p_index = index * (l.classes + 5) + 4; |
| | | float scale = predictions[p_index]; |
| | | int box_index = index * (l.classes + 5); |
| | | boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h); |
| | | boxes[index].x *= w; |
| | | boxes[index].y *= h; |
| | | boxes[index].w *= w; |
| | | boxes[index].h *= h; |
| | | |
| | | int class_index = index * (l.classes + 5) + 5; |
| | | if(l.softmax_tree){ |
| | | |
| | | hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0); |
| | | int found = 0; |
| | | for(j = l.classes - 1; j >= 0; --j){ |
| | | if(!found && predictions[class_index + j] > .5){ |
| | | found = 1; |
| | | } else { |
| | | predictions[class_index + j] = 0; |
| | | } |
| | | float prob = predictions[class_index+j]; |
| | | probs[index][j] = (scale > thresh) ? prob : 0; |
| | | } |
| | | }else{ |
| | | for(j = 0; j < l.classes; ++j){ |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | } |
| | | if(only_objectness){ |
| | | probs[index][0] = scale; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_region_layer_gpu(const region_layer l, network_state state) |