| | |
| | | #include "network.h" |
| | | #include "cost_layer.h" |
| | | #include "utils.h" |
| | | #include "blas.h" |
| | | #include "parser.h" |
| | | |
| | | #ifdef OPENCV |
| | |
| | | float *y; |
| | | } float_pair; |
| | | |
| | | float_pair get_rnn_data(unsigned char *text, int characters, int len, int batch, int steps) |
| | | float_pair get_rnn_data(unsigned char *text, size_t *offsets, int characters, size_t len, int batch, int steps) |
| | | { |
| | | float *x = calloc(batch * steps * characters, sizeof(float)); |
| | | float *y = calloc(batch * steps * characters, sizeof(float)); |
| | | int i,j; |
| | | for(i = 0; i < batch; ++i){ |
| | | int index = rand() %(len - steps - 1); |
| | | /* |
| | | int done = 1; |
| | | while(!done){ |
| | | index = rand() %(len - steps - 1); |
| | | while(index < len-steps-1 && text[index++] != '\n'); |
| | | if (index < len-steps-1) done = 1; |
| | | } |
| | | */ |
| | | for(j = 0; j < steps; ++j){ |
| | | x[(j*batch + i)*characters + text[index + j]] = 1; |
| | | y[(j*batch + i)*characters + text[index + j + 1]] = 1; |
| | | unsigned char curr = text[(offsets[i])%len]; |
| | | unsigned char next = text[(offsets[i] + 1)%len]; |
| | | |
| | | if(text[index+j] > 255 || text[index+j] <= 0 || text[index+j+1] > 255 || text[index+j+1] <= 0){ |
| | | text[index+j+2] = 0; |
| | | printf("%d %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]); |
| | | x[(j*batch + i)*characters + curr] = 1; |
| | | y[(j*batch + i)*characters + next] = 1; |
| | | |
| | | offsets[i] = (offsets[i] + 1) % len; |
| | | |
| | | if(curr > 255 || curr <= 0 || next > 255 || next <= 0){ |
| | | /*text[(index+j+2)%len] = 0; |
| | | printf("%ld %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]); |
| | | printf("%s", text+index); |
| | | */ |
| | | error("Bad char"); |
| | | } |
| | | } |
| | |
| | | return p; |
| | | } |
| | | |
| | | void train_char_rnn(char *cfgfile, char *weightfile, char *filename) |
| | | void reset_rnn_state(network net, int b) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | #ifdef GPU |
| | | if(l.state_gpu){ |
| | | fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | |
| | | void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear) |
| | | { |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | FILE *fp = fopen(filename, "rb"); |
| | | |
| | | fseek(fp, 0, SEEK_END); |
| | |
| | | fclose(fp); |
| | | |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | float avg_loss = -1; |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | |
| | | int inputs = get_network_input_size(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int batch = net.batch; |
| | | int steps = net.time_steps; |
| | | if(clear) *net.seen = 0; |
| | | int i = (*net.seen)/net.batch; |
| | | |
| | | int streams = batch/steps; |
| | | size_t *offsets = calloc(streams, sizeof(size_t)); |
| | | int j; |
| | | for(j = 0; j < streams; ++j){ |
| | | offsets[j] = rand_size_t()%size; |
| | | } |
| | | |
| | | clock_t time; |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | float_pair p = get_rnn_data(text, inputs, size, batch/steps, steps); |
| | | float_pair p = get_rnn_data(text, offsets, inputs, size, streams, steps); |
| | | |
| | | float loss = train_network_datum(net, p.x, p.y) / (batch); |
| | | free(p.x); |
| | |
| | | if (avg_loss < 0) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time)); |
| | | int chars = get_current_batch(net)*batch; |
| | | fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size); |
| | | |
| | | for(j = 0; j < streams; ++j){ |
| | | //printf("%d\n", j); |
| | | if(rand()%10 == 0){ |
| | | //fprintf(stderr, "Reset\n"); |
| | | offsets[j] = rand_size_t()%size; |
| | | reset_rnn_state(net, j); |
| | | } |
| | | } |
| | | |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | |
| | | unsigned char c; |
| | | int len = strlen(seed); |
| | | float *input = calloc(inputs, sizeof(float)); |
| | | |
| | | /* |
| | | fill_cpu(inputs, 0, input, 1); |
| | | for(i = 0; i < 10; ++i){ |
| | | network_predict(net, input); |
| | | } |
| | | fill_cpu(inputs, 0, input, 1); |
| | | */ |
| | | |
| | | for(i = 0; i < len-1; ++i){ |
| | | c = seed[i]; |
| | | input[(int)c] = 1; |
| | |
| | | c = seed[len-1]; |
| | | for(i = 0; i < num; ++i){ |
| | | printf("%c", c); |
| | | float r = rand_uniform(0,1); |
| | | float sum = 0; |
| | | input[(int)c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | for(j = 0; j < inputs; ++j){ |
| | | sum += out[j]; |
| | | if(sum > r) break; |
| | | for(j = 32; j < 127; ++j){ |
| | | //printf("%d %c %f\n",j, j, out[j]); |
| | | } |
| | | c = j; |
| | | for(j = 0; j < inputs; ++j){ |
| | | //if (out[j] < .0001) out[j] = 0; |
| | | } |
| | | c = sample_array(out, inputs); |
| | | } |
| | | printf("\n"); |
| | | } |
| | |
| | | int count = 0; |
| | | int c; |
| | | float *input = calloc(inputs, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 100; ++i){ |
| | | network_predict(net, input); |
| | | } |
| | | float sum = 0; |
| | | c = getc(stdin); |
| | | float log2 = log(2); |
| | | while(c != EOF){ |
| | | int next = getc(stdin); |
| | | if(next < 0 || next >= 255) error("Out of range character"); |
| | | if(next == EOF) break; |
| | | ++count; |
| | | input[c] = 1; |
| | |
| | | input[c] = 0; |
| | | sum += log(out[next])/log2; |
| | | c = next; |
| | | printf("%d Perplexity: %f\n", count, pow(2, -sum/count)); |
| | | } |
| | | printf("Perplexity: %f\n", pow(2, -sum/count)); |
| | | } |
| | | |
| | | |
| | |
| | | int len = find_int_arg(argc, argv, "-len", 1000); |
| | | float temp = find_float_arg(argc, argv, "-temp", .7); |
| | | int rseed = find_int_arg(argc, argv, "-srand", time(0)); |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename); |
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename, clear); |
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights); |
| | | else if(0==strcmp(argv[2], "test")) test_char_rnn(cfg, weights, len, seed, temp, rseed); |
| | | else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed); |
| | | } |