Joseph Redmon
2016-09-20 c899cc19f4c366e99ed1aeae401c90c5497001fa
src/parser.c
@@ -2,6 +2,7 @@
#include <string.h>
#include <stdlib.h>
#include "blas.h"
#include "parser.h"
#include "assert.h"
#include "activations.h"
@@ -147,7 +148,10 @@
    int n = option_find_int(options, "filters",1);
    int size = option_find_int(options, "size",1);
    int stride = option_find_int(options, "stride",1);
    int pad = option_find_int(options, "pad",0);
    int pad = option_find_int_quiet(options, "pad",0);
    int padding = option_find_int_quiet(options, "padding",0);
    if(pad) padding = size/2;
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
@@ -161,7 +165,7 @@
    int binary = option_find_int_quiet(options, "binary", 0);
    int xnor = option_find_int_quiet(options, "xnor", 0);
    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary, xnor);
    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor);
    layer.flipped = option_find_int_quiet(options, "flipped", 0);
    layer.dot = option_find_float_quiet(options, "dot", 0);
@@ -234,9 +238,16 @@
    int coords = option_find_int(options, "coords", 4);
    int classes = option_find_int(options, "classes", 20);
    int num = option_find_int(options, "num", 1);
    params.w = option_find_int(options, "side", params.w);
    params.h = option_find_int(options, "side", params.h);
    layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords);
    assert(l.outputs == params.inputs);
    l.log = option_find_int_quiet(options, "log", 0);
    l.sqrt = option_find_int_quiet(options, "sqrt", 0);
    l.softmax = option_find_int(options, "softmax", 0);
    l.max_boxes = option_find_int_quiet(options, "max",30);
    l.jitter = option_find_float(options, "jitter", .2);
@@ -278,6 +289,7 @@
    COST_TYPE type = get_cost_type(type_s);
    float scale = option_find_float_quiet(options, "scale",1);
    cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale);
    layer.ratio =  option_find_float_quiet(options, "ratio",0);
    return layer;
}
@@ -324,6 +336,7 @@
{
    int stride = option_find_int(options, "stride",1);
    int size = option_find_int(options, "size",stride);
    int padding = option_find_int_quiet(options, "padding", (size-1)/2);
    int batch,h,w,c;
    h = params.h;
@@ -332,7 +345,7 @@
    batch=params.batch;
    if(!(h && w && c)) error("Layer before maxpool layer must output image.");
    maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride);
    maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride,padding);
    return layer;
}
@@ -484,8 +497,10 @@
    net->min_crop = option_find_int_quiet(options, "min_crop",net->w);
    net->angle = option_find_float_quiet(options, "angle", 0);
    net->aspect = option_find_float_quiet(options, "aspect", 1);
    net->saturation = option_find_float_quiet(options, "saturation", 1);
    net->exposure = option_find_float_quiet(options, "exposure", 1);
    net->hue = option_find_float_quiet(options, "hue", 0);
    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
@@ -536,6 +551,7 @@
    node *n = sections->front;
    if(!n) error("Config file has no sections");
    network net = make_network(sections->size - 1);
    net.gpu_index = gpu_index;
    size_params params;
    section *s = (section *)n->val;
@@ -841,13 +857,13 @@
            for (j = 0; j < l.n; ++j){
                int index = j*l.c*l.size*l.size;
                fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp);
                fwrite(l.weights+index, sizeof(float), l.c*l.size*l.size, fp);
                for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp);
            }
            for (j = 0; j < l.n; ++j){
                int index = j*l.c*l.size*l.size;
                for (k = 0; k < l.c*l.size*l.size; ++k) fwrite(&zero, sizeof(float), 1, fp);
                fwrite(l.filters+index, sizeof(float), l.c*l.size*l.size, fp);
                fwrite(l.weights+index, sizeof(float), l.c*l.size*l.size, fp);
            }
        }
    }
@@ -861,7 +877,7 @@
        pull_convolutional_layer(l);
    }
#endif
    binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
    binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights);
    int size = l.c*l.size*l.size;
    int i, j, k;
    fwrite(l.biases, sizeof(float), l.n, fp);
@@ -871,7 +887,7 @@
        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
    }
    for(i = 0; i < l.n; ++i){
        float mean = l.binary_filters[i*size];
        float mean = l.binary_weights[i*size];
        if(mean < 0) mean = -mean;
        fwrite(&mean, sizeof(float), 1, fp);
        for(j = 0; j < size/8; ++j){
@@ -879,7 +895,7 @@
            unsigned char c = 0;
            for(k = 0; k < 8; ++k){
                if (j*8 + k >= size) break;
                if (l.binary_filters[index + k] > 0) c = (c | 1<<k);
                if (l.binary_weights[index + k] > 0) c = (c | 1<<k);
            }
            fwrite(&c, sizeof(char), 1, fp);
        }
@@ -904,7 +920,7 @@
        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
    }
    fwrite(l.filters, sizeof(float), num, fp);
    fwrite(l.weights, sizeof(float), num, fp);
}
void save_batchnorm_weights(layer l, FILE *fp)
@@ -937,6 +953,11 @@
void save_weights_upto(network net, char *filename, int cutoff)
{
#ifdef GPU
    if(net.gpu_index >= 0){
    cuda_set_device(net.gpu_index);
    }
#endif
    fprintf(stderr, "Saving weights to %s\n", filename);
    FILE *fp = fopen(filename, "w");
    if(!fp) file_error(filename);
@@ -982,7 +1003,7 @@
            int locations = l.out_w*l.out_h;
            int size = l.size*l.size*l.c*l.n*locations;
            fwrite(l.biases, sizeof(float), l.outputs, fp);
            fwrite(l.filters, sizeof(float), size, fp);
            fwrite(l.weights, sizeof(float), size, fp);
        }
    }
    fclose(fp);
@@ -1060,7 +1081,7 @@
            fread(&c, sizeof(char), 1, fp);
            for(k = 0; k < 8; ++k){
                if (j*8 + k >= size) break;
                l.filters[index + k] = (c & 1<<k) ? mean : -mean;
                l.weights[index + k] = (c & 1<<k) ? mean : -mean;
            }
        }
    }
@@ -1084,11 +1105,12 @@
        fread(l.rolling_mean, sizeof(float), l.n, fp);
        fread(l.rolling_variance, sizeof(float), l.n, fp);
    }
    fread(l.filters, sizeof(float), num, fp);
    fread(l.weights, sizeof(float), num, fp);
    //if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1);
    if (l.flipped) {
        transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
        transpose_matrix(l.weights, l.c*l.size*l.size, l.n);
    }
    //if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters);
    //if (l.binary) binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.weights);
#ifdef GPU
    if(gpu_index >= 0){
        push_convolutional_layer(l);
@@ -1099,6 +1121,11 @@
void load_weights_upto(network *net, char *filename, int cutoff)
{
#ifdef GPU
    if(net->gpu_index >= 0){
    cuda_set_device(net->gpu_index);
    }
#endif
    fprintf(stderr, "Loading weights from %s...", filename);
    fflush(stdout);
    FILE *fp = fopen(filename, "rb");
@@ -1123,7 +1150,7 @@
        if(l.type == DECONVOLUTIONAL){
            int num = l.n*l.c*l.size*l.size;
            fread(l.biases, sizeof(float), l.n, fp);
            fread(l.filters, sizeof(float), num, fp);
            fread(l.weights, sizeof(float), num, fp);
#ifdef GPU
            if(gpu_index >= 0){
                push_deconvolutional_layer(l);
@@ -1158,7 +1185,7 @@
            int locations = l.out_w*l.out_h;
            int size = l.size*l.size*l.c*l.n*locations;
            fread(l.biases, sizeof(float), l.outputs, fp);
            fread(l.filters, sizeof(float), size, fp);
            fread(l.weights, sizeof(float), size, fp);
#ifdef GPU
            if(gpu_index >= 0){
                push_local_layer(l);