| | |
| | | #include "parser.h" |
| | | #include "region_layer.h" |
| | | #include "reorg_layer.h" |
| | | #include "reorg_old_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "route_layer.h" |
| | | #include "shortcut_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "utils.h" |
| | | #include "upsample_layer.h" |
| | | #include "yolo_layer.h" |
| | | #include <stdint.h> |
| | | |
| | | typedef struct{ |
| | |
| | | if (strcmp(type, "[cost]")==0) return COST; |
| | | if (strcmp(type, "[detection]")==0) return DETECTION; |
| | | if (strcmp(type, "[region]")==0) return REGION; |
| | | if (strcmp(type, "[yolo]") == 0) return YOLO; |
| | | if (strcmp(type, "[local]")==0) return LOCAL; |
| | | if (strcmp(type, "[conv]")==0 |
| | | || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; |
| | |
| | | if (strcmp(type, "[max]")==0 |
| | | || strcmp(type, "[maxpool]")==0) return MAXPOOL; |
| | | if (strcmp(type, "[reorg]")==0) return REORG; |
| | | if (strcmp(type, "[reorg_old]") == 0) return REORG_OLD; |
| | | if (strcmp(type, "[avg]")==0 |
| | | || strcmp(type, "[avgpool]")==0) return AVGPOOL; |
| | | if (strcmp(type, "[dropout]")==0) return DROPOUT; |
| | |
| | | if (strcmp(type, "[soft]")==0 |
| | | || strcmp(type, "[softmax]")==0) return SOFTMAX; |
| | | if (strcmp(type, "[route]")==0) return ROUTE; |
| | | if (strcmp(type, "[upsample]") == 0) return UPSAMPLE; |
| | | return BLANK; |
| | | } |
| | | |
| | |
| | | return layer; |
| | | } |
| | | |
| | | int *parse_yolo_mask(char *a, int *num) |
| | | { |
| | | int *mask = 0; |
| | | if (a) { |
| | | int len = strlen(a); |
| | | int n = 1; |
| | | int i; |
| | | for (i = 0; i < len; ++i) { |
| | | if (a[i] == ',') ++n; |
| | | } |
| | | mask = calloc(n, sizeof(int)); |
| | | for (i = 0; i < n; ++i) { |
| | | int val = atoi(a); |
| | | mask[i] = val; |
| | | a = strchr(a, ',') + 1; |
| | | } |
| | | *num = n; |
| | | } |
| | | return mask; |
| | | } |
| | | |
| | | layer parse_yolo(list *options, size_params params) |
| | | { |
| | | int classes = option_find_int(options, "classes", 20); |
| | | int total = option_find_int(options, "num", 1); |
| | | int num = total; |
| | | |
| | | char *a = option_find_str(options, "mask", 0); |
| | | int *mask = parse_yolo_mask(a, &num); |
| | | int max_boxes = option_find_int_quiet(options, "max", 90); |
| | | layer l = make_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes, max_boxes); |
| | | if (l.outputs != params.inputs) { |
| | | printf("Error: l.outputs == params.inputs \n"); |
| | | printf("filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer \n"); |
| | | exit(EXIT_FAILURE); |
| | | } |
| | | //assert(l.outputs == params.inputs); |
| | | |
| | | //l.max_boxes = option_find_int_quiet(options, "max", 90); |
| | | l.jitter = option_find_float(options, "jitter", .2); |
| | | l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
| | | |
| | | l.ignore_thresh = option_find_float(options, "ignore_thresh", .5); |
| | | l.truth_thresh = option_find_float(options, "truth_thresh", 1); |
| | | l.random = option_find_int_quiet(options, "random", 0); |
| | | |
| | | char *map_file = option_find_str(options, "map", 0); |
| | | if (map_file) l.map = read_map(map_file); |
| | | |
| | | a = option_find_str(options, "anchors", 0); |
| | | if (a) { |
| | | int len = strlen(a); |
| | | int n = 1; |
| | | int i; |
| | | for (i = 0; i < len; ++i) { |
| | | if (a[i] == ',') ++n; |
| | | } |
| | | for (i = 0; i < n && i < total*2; ++i) { |
| | | float bias = atof(a); |
| | | l.biases[i] = bias; |
| | | a = strchr(a, ',') + 1; |
| | | } |
| | | } |
| | | return l; |
| | | } |
| | | |
| | | layer parse_region(list *options, size_params params) |
| | | { |
| | | int coords = option_find_int(options, "coords", 4); |
| | | int classes = option_find_int(options, "classes", 20); |
| | | int num = option_find_int(options, "num", 1); |
| | | int max_boxes = option_find_int_quiet(options, "max", 90); |
| | | |
| | | layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords); |
| | | assert(l.outputs == params.inputs); |
| | | layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords, max_boxes); |
| | | if (l.outputs != params.inputs) { |
| | | printf("Error: l.outputs == params.inputs \n"); |
| | | printf("filters= in the [convolutional]-layer doesn't correspond to classes= or num= in [region]-layer \n"); |
| | | exit(EXIT_FAILURE); |
| | | } |
| | | //assert(l.outputs == params.inputs); |
| | | |
| | | l.log = option_find_int_quiet(options, "log", 0); |
| | | l.sqrt = option_find_int_quiet(options, "sqrt", 0); |
| | | |
| | | l.small_object = option_find_int(options, "small_object", 0); |
| | | l.softmax = option_find_int(options, "softmax", 0); |
| | | l.max_boxes = option_find_int_quiet(options, "max",30); |
| | | l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
| | | //l.max_boxes = option_find_int_quiet(options, "max",30); |
| | | l.jitter = option_find_float(options, "jitter", .2); |
| | | l.rescore = option_find_int_quiet(options, "rescore",0); |
| | | |
| | |
| | | l.coord_scale = option_find_float(options, "coord_scale", 1); |
| | | l.object_scale = option_find_float(options, "object_scale", 1); |
| | | l.noobject_scale = option_find_float(options, "noobject_scale", 1); |
| | | l.mask_scale = option_find_float(options, "mask_scale", 1); |
| | | l.class_scale = option_find_float(options, "class_scale", 1); |
| | | l.bias_match = option_find_int_quiet(options, "bias_match",0); |
| | | |
| | |
| | | for(i = 0; i < len; ++i){ |
| | | if (a[i] == ',') ++n; |
| | | } |
| | | for(i = 0; i < n; ++i){ |
| | | for(i = 0; i < n && i < num*2; ++i){ |
| | | float bias = atof(a); |
| | | l.biases[i] = bias; |
| | | a = strchr(a, ',')+1; |
| | |
| | | return layer; |
| | | } |
| | | |
| | | layer parse_reorg_old(list *options, size_params params) |
| | | { |
| | | printf("\n reorg_old \n"); |
| | | int stride = option_find_int(options, "stride", 1); |
| | | int reverse = option_find_int_quiet(options, "reverse", 0); |
| | | |
| | | int batch, h, w, c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch = params.batch; |
| | | if (!(h && w && c)) error("Layer before reorg layer must output image."); |
| | | |
| | | layer layer = make_reorg_old_layer(batch, w, h, c, stride, reverse); |
| | | return layer; |
| | | } |
| | | |
| | | maxpool_layer parse_maxpool(list *options, size_params params) |
| | | { |
| | | int stride = option_find_int(options, "stride",1); |
| | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_upsample(list *options, size_params params, network net) |
| | | { |
| | | |
| | | int stride = option_find_int(options, "stride", 2); |
| | | layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride); |
| | | l.scale = option_find_float_quiet(options, "scale", 1); |
| | | return l; |
| | | } |
| | | |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "layers"); |
| | |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); |
| | | net->min_crop = option_find_int_quiet(options, "min_crop",net->w); |
| | | net->flip = option_find_int_quiet(options, "flip", 1); |
| | | |
| | | net->small_object = option_find_int_quiet(options, "small_object", 0); |
| | | net->angle = option_find_float_quiet(options, "angle", 0); |
| | | net->aspect = option_find_float_quiet(options, "aspect", 1); |
| | | net->saturation = option_find_float_quiet(options, "saturation", 1); |
| | |
| | | char *policy_s = option_find_str(options, "policy", "constant"); |
| | | net->policy = get_policy(policy_s); |
| | | net->burn_in = option_find_int_quiet(options, "burn_in", 0); |
| | | #ifdef CUDNN_HALF |
| | | net->burn_in = 0; |
| | | #endif |
| | | if(net->policy == STEP){ |
| | | net->step = option_find_int(options, "step", 1); |
| | | net->scale = option_find_float(options, "scale", 1); |
| | |
| | | params.time_steps = net.time_steps; |
| | | params.net = net; |
| | | |
| | | float bflops = 0; |
| | | size_t workspace_size = 0; |
| | | n = n->next; |
| | | int count = 0; |
| | |
| | | fprintf(stderr, "layer filters size input output\n"); |
| | | while(n){ |
| | | params.index = count; |
| | | fprintf(stderr, "%5d ", count); |
| | | fprintf(stderr, "%4d ", count); |
| | | s = (section *)n->val; |
| | | options = s->options; |
| | | layer l = {0}; |
| | |
| | | l = parse_cost(options, params); |
| | | }else if(lt == REGION){ |
| | | l = parse_region(options, params); |
| | | }else if (lt == YOLO) { |
| | | l = parse_yolo(options, params); |
| | | }else if(lt == DETECTION){ |
| | | l = parse_detection(options, params); |
| | | }else if(lt == SOFTMAX){ |
| | |
| | | }else if(lt == MAXPOOL){ |
| | | l = parse_maxpool(options, params); |
| | | }else if(lt == REORG){ |
| | | l = parse_reorg(options, params); |
| | | l = parse_reorg(options, params); } |
| | | else if (lt == REORG_OLD) { |
| | | l = parse_reorg_old(options, params); |
| | | }else if(lt == AVGPOOL){ |
| | | l = parse_avgpool(options, params); |
| | | }else if(lt == ROUTE){ |
| | | l = parse_route(options, params, net); |
| | | }else if (lt == UPSAMPLE) { |
| | | l = parse_upsample(options, params, net); |
| | | }else if(lt == SHORTCUT){ |
| | | l = parse_shortcut(options, params, net); |
| | | }else if(lt == DROPOUT){ |
| | |
| | | params.c = l.out_c; |
| | | params.inputs = l.outputs; |
| | | } |
| | | if (l.bflops > 0) bflops += l.bflops; |
| | | } |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | | net.output = get_network_output(net); |
| | | printf("Total BFLOPS %5.3f \n", bflops); |
| | | if(workspace_size){ |
| | | //printf("%ld\n", workspace_size); |
| | | #ifdef GPU |