| | |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include "server.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | |
| | | |
| | | void test_convolutional_layer() |
| | | { |
| | | /* |
| | | int i; |
| | | image dog = load_image("data/dog.jpg",224,224); |
| | | network net = parse_network_cfg("cfg/convolutional.cfg"); |
| | |
| | | |
| | | float *gpu_del = calloc(del_size, sizeof(float)); |
| | | memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float)); |
| | | */ |
| | | |
| | | /* |
| | | start = clock(); |
| | |
| | | */ |
| | | } |
| | | |
| | | /* |
| | | void test_col2im() |
| | | { |
| | | float col[] = {1,2,1,2, |
| | |
| | | int ksize = 3; |
| | | int stride = 1; |
| | | int pad = 0; |
| | | col2im_gpu(col, batch, |
| | | channels, height, width, |
| | | ksize, stride, pad, im); |
| | | //col2im_gpu(col, batch, |
| | | // channels, height, width, |
| | | // ksize, stride, pad, im); |
| | | int i; |
| | | for(i = 0; i < 16; ++i)printf("%f,", im[i]); |
| | | printf("\n"); |
| | | /* |
| | | float data_im[] = { |
| | | 1,2,3,4, |
| | | 5,6,7,8, |
| | |
| | | ksize, stride, pad, data_col) ; |
| | | for(i = 0; i < 18; ++i)printf("%f,", data_col[i]); |
| | | printf("\n"); |
| | | */ |
| | | } |
| | | */ |
| | | |
| | | #endif |
| | | |
| | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data,1, dog.c, dog.h, dog.w, size, stride, 0, matrix); |
| | | //im2col_cpu(dog.data,1, dog.c, dog.h, dog.w, size, stride, 0, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | |
| | | |
| | | void verify_convolutional_layer() |
| | | { |
| | | /* |
| | | srand(0); |
| | | int i; |
| | | int n = 1; |
| | |
| | | printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
| | | show_image(mj1, "forward jacobian"); |
| | | show_image(mj2, "backward jacobian"); |
| | | */ |
| | | } |
| | | |
| | | void test_load() |
| | |
| | | } |
| | | } |
| | | |
| | | void train_imagenet_distributed(char *address) |
| | | { |
| | | float avg_loss = 1; |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | imgs = 1; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | while(1){ |
| | | i += 1; |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | #ifdef GPU |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | client_update(net, address); |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); |
| | | #endif |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void train_imagenet() |
| | | { |
| | | float avg_loss = 1; |
| | | //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg"); |
| | | network net = parse_network_cfg("cfg/alexnet.part"); |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/alexnet.cfg"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | srand(time(0)); |
| | | //imgs=1; |
| | | int i = 0; |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | |
| | | for(c = 0; c < 8; ++c){ |
| | | j = (r*8 + c) * 5; |
| | | printf("Prob: %f\n", box[j]); |
| | | if(box[j] > .999){ |
| | | if(box[j] > .01){ |
| | | int d = 256/8; |
| | | int y = r*d+box[j+1]*d; |
| | | int x = c*d+box[j+2]*d; |
| | |
| | | |
| | | void test_detection() |
| | | { |
| | | network net = parse_network_cfg("cfg/detnet_test.cfg"); |
| | | network net = parse_network_cfg("cfg/detnet.test"); |
| | | srand(2222222); |
| | | clock_t time; |
| | | char filename[256]; |
| | |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | translate_data_rows(train, -144); |
| | | translate_data_rows(test, -144); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, iters); |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | end = clock(); |
| | | float test_acc = network_accuracy(net, test); |
| | | float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | } |
| | | |
| | | void train_nist_distributed(char *address) |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.client"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | //data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | //normalize_data_rows(test); |
| | | int count = 0; |
| | | int iters = 50000/net.batch; |
| | | iters = 1000/net.batch + 1; |
| | | while(++count <= 2000){ |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd_gpu(net, train, iters); |
| | | client_update(net, address); |
| | | end = clock(); |
| | | //float test_acc = network_accuracy_gpu(net, test); |
| | | //float test_acc = 0; |
| | | printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | } |
| | | |
| | | void test_ensemble() |
| | | { |
| | | int i; |
| | |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | |
| | | /* |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data,1, c, h, w, size, stride, 0, matrix); |
| | | //im2col_cpu(test.data,1, c, h, w, size, stride, 0, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | */ |
| | | |
| | | void flip_network() |
| | | { |
| | |
| | | #endif |
| | | } |
| | | |
| | | void test_server() |
| | | void test_correct_alexnet() |
| | | { |
| | | server_update(); |
| | | char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); |
| | | list *plist = get_paths("/data/imagenet/cls.train.list"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | clock_t time; |
| | | int count = 0; |
| | | |
| | | srand(222222); |
| | | network net = parse_network_cfg("cfg/alexnet.test"); |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = 1000/net.batch+1; |
| | | imgs = 1; |
| | | |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network_data_cpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
| | | free_data(train); |
| | | } |
| | | #ifdef GPU |
| | | count = 0; |
| | | srand(222222); |
| | | net = parse_network_cfg("cfg/alexnet.test"); |
| | | while(++count <= 5){ |
| | | time=clock(); |
| | | data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256); |
| | | //translate_data_rows(train, -144); |
| | | normalize_data_rows(train); |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | float loss = train_network_data_gpu(net, train, imgs); |
| | | printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch); |
| | | free_data(train); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void run_server() |
| | | { |
| | | srand(time(0)); |
| | | network net = parse_network_cfg("cfg/nist.server"); |
| | | server_update(net); |
| | | } |
| | | void test_client() |
| | | { |
| | | client_update(); |
| | | network net = parse_network_cfg("cfg/alexnet.client"); |
| | | clock_t time=clock(); |
| | | client_update(net, "localhost"); |
| | | printf("1\n"); |
| | | client_update(net, "localhost"); |
| | | printf("2\n"); |
| | | client_update(net, "localhost"); |
| | | printf("3\n"); |
| | | printf("Transfered: %lf seconds\n", sec(clock()-time)); |
| | | } |
| | | |
| | | int find_int_arg(int argc, char* argv[], char *arg) |
| | | { |
| | | int i; |
| | | for(i = 0; i < argc-1; ++i) if(0==strcmp(argv[i], arg)) return atoi(argv[i+1]); |
| | | return 0; |
| | | } |
| | | |
| | | int main(int argc, char *argv[]) |
| | |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | int index = find_int_arg(argc, argv, "-i"); |
| | | #ifdef GPU |
| | | cl_setup(index); |
| | | #endif |
| | | if(0==strcmp(argv[1], "train")) train_imagenet(); |
| | | else if(0==strcmp(argv[1], "detection")) train_detection_net(); |
| | | else if(0==strcmp(argv[1], "asirra")) train_asirra(); |
| | | else if(0==strcmp(argv[1], "nist")) train_nist(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_gpu_net(); |
| | | else if(0==strcmp(argv[1], "test_correct")) test_correct_alexnet(); |
| | | else if(0==strcmp(argv[1], "test")) test_imagenet(); |
| | | else if(0==strcmp(argv[1], "server")) test_server(); |
| | | else if(0==strcmp(argv[1], "client")) test_client(); |
| | | else if(0==strcmp(argv[1], "server")) run_server(); |
| | | else if(0==strcmp(argv[1], "detect")) test_detection(); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | #ifdef GPU |
| | | else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas(); |
| | | #endif |
| | | else if(argc < 3){ |
| | | fprintf(stderr, "usage: %s <function>\n", argv[0]); |
| | | return 0; |
| | | } |
| | | else if(0==strcmp(argv[1], "client")) train_nist_distributed(argv[2]); |
| | | else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]); |
| | | else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]); |
| | | fprintf(stderr, "Success!\n"); |
| | | return 0; |
| | | } |