| | |
| | | return float_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | } |
| | | |
| | | void visualize_convolutional_layer(convolutional_layer layer, char *window) |
| | | image *weighted_sum_filters(convolutional_layer layer, image *prev_filters) |
| | | { |
| | | int color = 1; |
| | | int border = 1; |
| | | int h,w,c; |
| | | int size = layer.size; |
| | | h = size; |
| | | w = (size + border) * layer.n - border; |
| | | c = layer.c; |
| | | if(c != 3 || !color){ |
| | | h = (h+border)*c - border; |
| | | c = 1; |
| | | image *filters = calloc(layer.n, sizeof(image)); |
| | | int i,j,k,c; |
| | | if(!prev_filters){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(layer, i)); |
| | | } |
| | | } |
| | | |
| | | image filters = make_image(h,w,c); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | int w_offset = i*(size+border); |
| | | image k = get_convolutional_filter(layer, i); |
| | | //printf("%f ** ", layer.biases[i]); |
| | | //print_image(k); |
| | | image copy = copy_image(k); |
| | | normalize_image(copy); |
| | | for(j = 0; j < k.c; ++j){ |
| | | //set_pixel(copy,0,0,j,layer.biases[i]); |
| | | } |
| | | if(c == 3 && color){ |
| | | embed_image(copy, filters, 0, w_offset); |
| | | } |
| | | else{ |
| | | for(j = 0; j < k.c; ++j){ |
| | | int h_offset = j*(size+border); |
| | | image layer = get_image_layer(k, j); |
| | | embed_image(layer, filters, h_offset, w_offset); |
| | | free_image(layer); |
| | | else{ |
| | | image base = prev_filters[0]; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image filter = get_convolutional_filter(layer, i); |
| | | filters[i] = make_image(base.h, base.w, base.c); |
| | | for(j = 0; j < layer.size; ++j){ |
| | | for(k = 0; k < layer.size; ++k){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | float weight = get_pixel(filter, j, k, c); |
| | | image prev_filter = copy_image(prev_filters[c]); |
| | | scale_image(prev_filter, weight); |
| | | add_into_image(prev_filter, filters[i], 0,0); |
| | | free_image(prev_filter); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | free_image(copy); |
| | | } |
| | | return filters; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) |
| | | { |
| | | image *single_filters = weighted_sum_filters(layer, 0); |
| | | show_images(single_filters, layer.n, window); |
| | | |
| | | image delta = get_convolutional_delta(layer); |
| | | image dc = collapse_image_layers(delta, 1); |
| | | char buff[256]; |
| | | sprintf(buff, "%s: Delta", window); |
| | | show_image(dc, buff); |
| | | //show_image(dc, buff); |
| | | free_image(dc); |
| | | show_image(filters, window); |
| | | free_image(filters); |
| | | return single_filters; |
| | | } |
| | | |