| | |
| | | int size = 3; |
| | | float eps = .00000001; |
| | | image test = make_random_image(5,5, 1); |
| | | convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU); |
| | | convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU); |
| | | image out = get_convolutional_image(layer); |
| | | float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
| | | |
| | |
| | | while(1){ |
| | | i += 1000; |
| | | data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256); |
| | | image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | //image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | //visualize_network(net); |
| | | //cvWaitKey(100); |
| | | //show_image(im, "input"); |
| | |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | | void test_visualize() |
| | | { |
| | | network net = parse_network_cfg("cfg/imagenet.cfg"); |
| | | srand(2222222); |
| | | visualize_network(net); |
| | | cvWaitKey(0); |
| | | } |
| | | void test_full() |
| | | { |
| | | network net = parse_network_cfg("cfg/backup_1300.cfg"); |
| | |
| | | fclose(fp); |
| | | } |
| | | |
| | | void test_cifar10() |
| | | { |
| | | data test = load_cifar10_data("images/cifar10/test_batch.bin"); |
| | | scale_data_rows(test, 1./255); |
| | | network net = parse_network_cfg("cfg/cifar10.cfg"); |
| | | int count = 0; |
| | | float lr = .000005; |
| | | float momentum = .99; |
| | | float decay = 0.001; |
| | | decay = 0; |
| | | int batch = 10000; |
| | | while(++count <= 10000){ |
| | | char buff[256]; |
| | | sprintf(buff, "images/cifar10/data_batch_%d.bin", rand()%5+1); |
| | | data train = load_cifar10_data(buff); |
| | | scale_data_rows(train, 1./255); |
| | | train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | //printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
| | | |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%5f %5f\n",(double)count*batch/train.X.rows/5, 1-test_acc); |
| | | free_data(train); |
| | | } |
| | | |
| | | } |
| | | |
| | | void test_vince() |
| | | { |
| | | network net = parse_network_cfg("cfg/vince.cfg"); |
| | | data train = load_categorical_data_csv("images/vince.txt", 144, 2); |
| | | normalize_data_rows(train); |
| | | |
| | | int count = 0; |
| | | float lr = .00005; |
| | | float momentum = .9; |
| | | float decay = 0.0001; |
| | | decay = 0; |
| | | int batch = 10000; |
| | | while(++count <= 10000){ |
| | | float loss = train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
| | | } |
| | | } |
| | | |
| | | void test_nist() |
| | | { |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | network net = parse_network_cfg("cfg/nist_basic.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | //randomize_data(train); |
| | | int count = 0; |
| | | float lr = .0005; |
| | | float lr = .00005; |
| | | float momentum = .9; |
| | | float decay = 0.001; |
| | | clock_t start = clock(), end; |
| | | while(++count <= 100){ |
| | | //visualize_network(net); |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | start=end; |
| | | //cvWaitKey(100); |
| | | //lr /= 2; |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | //lr *= .5; |
| | | float decay = 0.0001; |
| | | decay = 0; |
| | | //clock_t start = clock(), end; |
| | | int batch = 10000; |
| | | while(++count <= 10000){ |
| | | float loss = train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
| | | //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay); |
| | | //end = clock(); |
| | | //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | //start=end; |
| | | /* |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | //lr *= .5; |
| | | } |
| | | */ |
| | | } |
| | | } |
| | | |
| | |
| | | { |
| | | int h = voc_size(outh); |
| | | int w = voc_size(outw); |
| | | printf("%d %d\n", h, w); |
| | | fprintf(stderr, "%d %d\n", h, w); |
| | | |
| | | IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels); |
| | | cvResize(src, sized, CV_INTER_LINEAR); |
| | | image im = ipl_to_image(sized); |
| | | reset_network_size(net, im.h, im.w, im.c); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | image out = get_network_image_layer(net, 6); |
| | | //printf("%d %d\n%d %d\n", outh, out.h, outw, out.w); |
| | | free_image(im); |
| | | cvReleaseImage(&sized); |
| | | return copy_image(out); |
| | | } |
| | | |
| | | void features_VOC(int part, int total) |
| | | void features_VOC_image_size(char *image_path, int h, int w) |
| | | { |
| | | int i,j, count = 0; |
| | | int j; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | char *path_file = "images/VOC2012/all_paths.txt"; |
| | | char *out_dir = "voc_features/"; |
| | | list *paths = get_paths(path_file); |
| | | node *n = paths->front; |
| | | int size = paths->size; |
| | | for(count = 0; count < part*size/total; ++count) n = n->next; |
| | | while(n && count++ < (part+1)*size/total){ |
| | | char *path = (char *)n->val; |
| | | char buff[1024]; |
| | | sprintf(buff, "%s%s.txt",out_dir, path); |
| | | printf("%s\n", path); |
| | | FILE *fp = fopen(buff, "w"); |
| | | if(fp == 0) file_error(buff); |
| | | fprintf(stderr, "%s\n", image_path); |
| | | |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(path,-1)) == 0 ) |
| | | { |
| | | printf("Cannot load file image %s\n", path); |
| | | exit(0); |
| | | } |
| | | int w = src->width; |
| | | int h = src->height; |
| | | int sbin = 8; |
| | | int interval = 10; |
| | | double scale = pow(2., 1./interval); |
| | | int m = (w<h)?w:h; |
| | | int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale)); |
| | | image *ims = calloc(max_scale+interval, sizeof(image)); |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path); |
| | | image out = features_output_size(net, src, h, w); |
| | | for(j = 0; j < out.c*out.h*out.w; ++j){ |
| | | if(j != 0) printf(","); |
| | | printf("%g", out.data[j]); |
| | | } |
| | | printf("\n"); |
| | | free_image(out); |
| | | cvReleaseImage(&src); |
| | | } |
| | | |
| | | for(i = 0; i < interval; ++i){ |
| | | double factor = 1./pow(scale, i); |
| | | double ih = round(h*factor); |
| | | double iw = round(w*factor); |
| | | int ex_h = round(ih/4.) - 2; |
| | | int ex_w = round(iw/4.) - 2; |
| | | ims[i] = features_output_size(net, src, ex_h, ex_w); |
| | | void visualize_imagenet_features(char *filename) |
| | | { |
| | | int i,j,k; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | list *plist = get_paths(filename); |
| | | node *n = plist->front; |
| | | int h = voc_size(1), w = voc_size(1); |
| | | int num = get_network_image(net).c; |
| | | image *vizs = calloc(num, sizeof(image)); |
| | | for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3); |
| | | while(n){ |
| | | char *image_path = (char *)n->val; |
| | | image im = load_image(image_path, 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | image out = get_network_image(net); |
| | | |
| | | ih = round(h*factor); |
| | | iw = round(w*factor); |
| | | ex_h = round(ih/8.) - 2; |
| | | ex_w = round(iw/8.) - 2; |
| | | ims[i+interval] = features_output_size(net, src, ex_h, ex_w); |
| | | for(j = i+interval; j < max_scale; j += interval){ |
| | | factor /= 2.; |
| | | ih = round(h*factor); |
| | | iw = round(w*factor); |
| | | ex_h = round(ih/8.) - 2; |
| | | ex_w = round(iw/8.) - 2; |
| | | ims[j+interval] = features_output_size(net, src, ex_h, ex_w); |
| | | int dh = (im.h - h)/h; |
| | | int dw = (im.w - w)/w; |
| | | for(i = 0; i < out.h; ++i){ |
| | | for(j = 0; j < out.w; ++j){ |
| | | image sub = get_sub_image(im, dh*i, dw*j, h, w); |
| | | for(k = 0; k < out.c; ++k){ |
| | | float val = get_pixel(out, i, j, k); |
| | | //printf("%f, ", val); |
| | | image sub_c = copy_image(sub); |
| | | scale_image(sub_c, val); |
| | | add_into_image(sub_c, vizs[k], 0, 0); |
| | | free_image(sub_c); |
| | | } |
| | | free_image(sub); |
| | | } |
| | | } |
| | | for(i = 0; i < max_scale+interval; ++i){ |
| | | image out = ims[i]; |
| | | //printf("%d, %d\n", out.h, out.w); |
| | | fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w); |
| | | for(j = 0; j < out.c*out.h*out.w; ++j){ |
| | | if(j != 0)fprintf(fp, ","); |
| | | fprintf(fp, "%g", out.data[j]); |
| | | } |
| | | fprintf(fp, "\n"); |
| | | free_image(out); |
| | | } |
| | | free(ims); |
| | | fclose(fp); |
| | | cvReleaseImage(&src); |
| | | //printf("\n"); |
| | | show_images(vizs, 10, "IMAGENET Visualization"); |
| | | cvWaitKey(1000); |
| | | n = n->next; |
| | | } |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void features_VOC_image(char *image_file, char *image_dir, char *out_dir) |
| | |
| | | int i,j; |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | char image_path[1024]; |
| | | sprintf(image_path, "%s%s",image_dir, image_file); |
| | | sprintf(image_path, "%s/%s",image_dir, image_file); |
| | | char out_path[1024]; |
| | | sprintf(out_path, "%s%s.txt",out_dir, image_file); |
| | | sprintf(out_path, "%s/%s.txt",out_dir, image_file); |
| | | printf("%s\n", image_file); |
| | | FILE *fp = fopen(out_path, "w"); |
| | | if(fp == 0) file_error(out_path); |
| | |
| | | int w = src->width; |
| | | int h = src->height; |
| | | int sbin = 8; |
| | | int interval = 10; |
| | | int interval = 4; |
| | | double scale = pow(2., 1./interval); |
| | | int m = (w<h)?w:h; |
| | | int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale)); |
| | | if(max_scale < interval) error("max_scale must be >= interval"); |
| | | image *ims = calloc(max_scale+interval, sizeof(image)); |
| | | |
| | | for(i = 0; i < interval; ++i){ |
| | |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | |
| | | //test_blas(); |
| | | //test_visualize(); |
| | | //test_gpu_blas(); |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | //test_nist(); |
| | | //test_cifar10(); |
| | | //test_vince(); |
| | | //test_full(); |
| | | //train_VOC(); |
| | | features_VOC_image(argv[1], argv[2], argv[3]); |
| | | printf("Success!\n"); |
| | | //features_VOC_image(argv[1], argv[2], argv[3]); |
| | | //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3])); |
| | | //visualize_imagenet_features("data/assira/train.list"); |
| | | visualize_imagenet_features("data/VOC2011.list"); |
| | | fprintf(stderr, "Success!\n"); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |