| | |
| | | |
| | | layer.rolling_mean = calloc(c, sizeof(float)); |
| | | layer.rolling_variance = calloc(c, sizeof(float)); |
| | | |
| | | layer.forward = forward_batchnorm_layer; |
| | | layer.backward = backward_batchnorm_layer; |
| | | #ifdef GPU |
| | | layer.forward_gpu = forward_batchnorm_layer_gpu; |
| | | layer.backward_gpu = backward_batchnorm_layer_gpu; |
| | | |
| | | layer.output_gpu = cuda_make_array(layer.output, h * w * c * batch); |
| | | layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch); |
| | | |
| | |
| | | l.out_h = l.out_w = 1; |
| | | } |
| | | if(state.train){ |
| | | mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean); |
| | | variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance); |
| | | mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean); |
| | | variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance); |
| | | |
| | | scal_cpu(l.out_c, .9, l.rolling_mean, 1); |
| | | axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1); |
| | | scal_cpu(l.out_c, .9, l.rolling_variance, 1); |
| | | axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1); |
| | | |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1); |
| | | normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w); |
| | | copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1); |
| | | } else { |
| | | normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w); |
| | | } |
| | | scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w); |
| | | } |
| | | |
| | | void backward_batchnorm_layer(const layer layer, network_state state) |
| | | void backward_batchnorm_layer(const layer l, network_state state) |
| | | { |
| | | backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates); |
| | | |
| | | scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w); |
| | | |
| | | mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta); |
| | | variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta); |
| | | normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta); |
| | | if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_batchnorm_layer(layer l) |
| | | { |
| | | cuda_pull_array(l.scales_gpu, l.scales, l.c); |
| | | cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c); |
| | | cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c); |
| | | } |
| | | void push_batchnorm_layer(layer l) |
| | | { |
| | | cuda_push_array(l.scales_gpu, l.scales, l.c); |
| | | cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c); |
| | | cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c); |
| | | } |
| | | |
| | | void forward_batchnorm_layer_gpu(layer l, network_state state) |
| | | { |
| | | if(l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); |
| | |
| | | fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu); |
| | | fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu); |
| | | |
| | | scal_ongpu(l.out_c, .95, l.rolling_mean_gpu, 1); |
| | | axpy_ongpu(l.out_c, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1); |
| | | scal_ongpu(l.out_c, .95, l.rolling_variance_gpu, 1); |
| | | axpy_ongpu(l.out_c, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1); |
| | | scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1); |
| | | axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1); |
| | | scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1); |
| | | axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); |
| | | normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); |