AlexeyAB
2018-02-08 cd8a3dcb4ca42f22ad8f46a95e00977c92be6bbd
src/detection_layer.c
@@ -22,13 +22,20 @@
    l.coords = coords;
    l.rescore = rescore;
    l.side = side;
    l.w = side;
    l.h = side;
    assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs);
    l.cost = calloc(1, sizeof(float));
    l.outputs = l.inputs;
    l.truths = l.side*l.side*(1+l.coords+l.classes);
    l.output = calloc(batch*l.outputs, sizeof(float));
    l.delta = calloc(batch*l.outputs, sizeof(float));
    l.forward = forward_detection_layer;
    l.backward = backward_detection_layer;
#ifdef GPU
    l.forward_gpu = forward_detection_layer_gpu;
    l.backward_gpu = backward_detection_layer_gpu;
    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
@@ -44,17 +51,16 @@
    int locations = l.side*l.side;
    int i,j;
    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
    //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
    int b;
    if (l.softmax){
        for(b = 0; b < l.batch; ++b){
            int index = b*l.inputs;
            for (i = 0; i < locations; ++i) {
                int offset = i*l.classes;
                softmax_array(l.output + index + offset, l.classes, 1,
                softmax(l.output + index + offset, l.classes, 1,
                        l.output + index + offset);
            }
            int offset = locations*l.classes;
            activate_array(l.output + index + offset, locations*l.n*(1+l.coords), LOGISTIC);
        }
    }
    if(state.train){
@@ -133,11 +139,9 @@
                        best_index = 0;
                    }
                }
                /*
                if(1 && *(state.net.seen) < 100000){
                if(l.random && *(state.net.seen) < 64000){
                    best_index = rand()%l.n;
                }
                */
                int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
                int tbox_index = truth_index + 1 + l.classes;
@@ -175,10 +179,6 @@
                avg_iou += iou;
                ++count;
            }
            if(l.softmax){
                gradient_array(l.output + index + locations*l.classes, locations*l.n*(1+l.coords),
                        LOGISTIC, l.delta + index + locations*l.classes);
            }
        }
        if(0){
@@ -208,9 +208,11 @@
        }
        *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
        printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
        //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
    }
}
@@ -219,6 +221,35 @@
    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
{
    int i,j,n;
    float *predictions = l.output;
    //int per_cell = 5*num+classes;
    for (i = 0; i < l.side*l.side; ++i){
        int row = i / l.side;
        int col = i % l.side;
        for(n = 0; n < l.n; ++n){
            int index = i*l.n + n;
            int p_index = l.side*l.side*l.classes + i*l.n + n;
            float scale = predictions[p_index];
            int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4;
            boxes[index].x = (predictions[box_index + 0] + col) / l.side * w;
            boxes[index].y = (predictions[box_index + 1] + row) / l.side * h;
            boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w;
            boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h;
            for(j = 0; j < l.classes; ++j){
                int class_index = i*l.classes;
                float prob = scale*predictions[class_index+j];
                probs[index][j] = (prob > thresh) ? prob : 0;
            }
            if(only_objectness){
                probs[index][0] = scale;
            }
        }
    }
}
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer l, network_state state)