| | |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | #ifdef GPU |
| | | net.input_cl = 0; |
| | | #endif |
| | | return net; |
| | | } |
| | | |
| | |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | /* |
| | | int j,k; |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->n; ++i){ |
| | | for(j = l->c-1; j >= 0; --j){ |
| | | for(k = 0; k < l->size*l->size; ++k){ |
| | | fprintf(fp, "%g,", l->filters[i*(l->c*l->size*l->size)+j*l->size*l->size+k]); |
| | | } |
| | | } |
| | | } |
| | | */ |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | void print_connected_cfg(FILE *fp, connected_layer *l, int first) |
| | |
| | | fclose(fp); |
| | | } |
| | | |
| | | void forward_network(network net, float *input) |
| | | void forward_network(network net, float *input, int train) |
| | | { |
| | | int i; |
| | | #ifdef GPU |
| | | cl_setup(); |
| | | size_t size = get_network_input_size(net); |
| | | if(!net.input_cl){ |
| | | net.input_cl = clCreateBuffer(cl.context, |
| | | CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error); |
| | | check_error(cl); |
| | | } |
| | | cl_write_array(net.input_cl, input, size); |
| | | cl_mem input_cl = net.input_cl; |
| | | #endif |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | #ifdef GPU |
| | | forward_convolutional_layer_gpu(layer, input_cl); |
| | | input_cl = layer.output_cl; |
| | | #else |
| | | forward_convolutional_layer(layer, input); |
| | | #endif |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer(layer, input); |
| | | forward_connected_layer(layer, input, train); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | |
| | | } |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | learn_convolutional_layer(layer); |
| | | //learn_convolutional_layer(layer); |
| | | if(i != 0) backward_convolutional_layer(layer, prev_delta); |
| | | backward_convolutional_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | learn_connected_layer(layer, prev_input); |
| | | if(i != 0) backward_connected_layer(layer, prev_input, prev_delta); |
| | | backward_connected_layer(layer, prev_input, prev_delta); |
| | | } |
| | | } |
| | | return error; |
| | |
| | | |
| | | float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay) |
| | | { |
| | | forward_network(net, x); |
| | | forward_network(net, x, 1); |
| | | //int class = get_predicted_class_network(net); |
| | | float error = backward_network(net, x, y); |
| | | update_network(net, step, momentum, decay); |
| | |
| | | int index = rand()%d.X.rows; |
| | | float *x = d.X.vals[index]; |
| | | float *y = d.y.vals[index]; |
| | | forward_network(net, x); |
| | | forward_network(net, x, 1); |
| | | int class = get_predicted_class_network(net); |
| | | backward_network(net, x, y); |
| | | correct += (y[class]?1:0); |
| | |
| | | fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | int get_network_input_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | |
| | | return 0; |
| | | } |
| | | |
| | | /* |
| | | int resize_network(network net, int h, int w, int c) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net.layers[i]; |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | image output = get_convolutional_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net.layers[i]; |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | image output = get_maxpool_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | } |
| | | } |
| | | return 0; |
| | | } |
| | | */ |
| | | |
| | | int resize_network(network net, int h, int w, int c) |
| | | { |
| | | int i; |
| | |
| | | return get_network_output_size_layer(net, i); |
| | | } |
| | | |
| | | int get_network_input_size(network net) |
| | | { |
| | | return get_network_output_size_layer(net, 0); |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | |
| | | |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | forward_network(net, input); |
| | | forward_network(net, input, 0); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | | } |