| | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | im2col_cpu(dog.data, 1, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | |
| | | float v = ((float)rand()/RAND_MAX); |
| | | float truth = v*v; |
| | | input[0] = v; |
| | | forward_network(net, input); |
| | | forward_network(net, input, 1); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | float err = pow((out[0]-truth),2.); |
| | |
| | | normalize_data_rows(test); |
| | | for(j = 0; j < test.X.rows; ++j){ |
| | | float *x = test.X.vals[j]; |
| | | forward_network(net, x); |
| | | forward_network(net, x, 0); |
| | | int class = get_predicted_class_network(net); |
| | | fprintf(fp, "%d\n", class); |
| | | } |
| | |
| | | { |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("cfg/nist_basic.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | network net = parse_network_cfg("cfg/nist.cfg"); |
| | | data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | //randomize_data(train); |
| | |
| | | int batch = 10000; |
| | | while(++count <= 10000){ |
| | | float loss = train_network_sgd(net, train, batch, lr, momentum, decay); |
| | | printf("%5f %5f\n",(double)count*batch/train.X.rows, loss); |
| | | float test_acc = network_accuracy(net, test); |
| | | printf("%3d %5f %5f\n",count, loss, test_acc); |
| | | //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay); |
| | | //end = clock(); |
| | | //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | //start=end; |
| | | /* |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | //lr *= .5; |
| | | } |
| | | */ |
| | | } |
| | | } |
| | | |
| | |
| | | int index = rand()%m.rows; |
| | | //image p = float_to_image(1690,1,1,m.vals[index]); |
| | | //normalize_image(p); |
| | | forward_network(net, m.vals[index]); |
| | | forward_network(net, m.vals[index], 1); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | //printf("%f\n", out[0]); |
| | |
| | | matrix test = csv_to_matrix("test.csv"); |
| | | truth = pop_column(&test, 0); |
| | | for(i = 0; i < test.rows; ++i){ |
| | | forward_network(net, test.vals[i]); |
| | | forward_network(net, test.vals[i], 0); |
| | | float *out = get_network_output(net); |
| | | if(fabs(out[0]) < .5) fprintf(fp, "0\n"); |
| | | else fprintf(fp, "1\n"); |
| | |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | im2col_cpu(test.data, 1, c, h, w, size, stride, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | |
| | | cvResize(src, sized, CV_INTER_LINEAR); |
| | | image im = ipl_to_image(sized); |
| | | //normalize_array(im.data, im.h*im.w*im.c); |
| | | //translate_image(im, -144); |
| | | translate_image(im, -144); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | forward_network(net, im.data, 0); |
| | | image out = get_network_image(net); |
| | | free_image(im); |
| | | cvReleaseImage(&sized); |
| | |
| | | resize_network(net, im.h, im.w, im.c); |
| | | //scale_image(im, 1./255); |
| | | translate_image(im, -144); |
| | | forward_network(net, im.data); |
| | | forward_network(net, im.data, 0); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/(out.h-1); |
| | |
| | | image im = load_image(image_path, 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | forward_network(net, im.data, 0); |
| | | image out = get_network_image(net); |
| | | |
| | | int dh = (im.h - h)/h; |
| | |
| | | image im = load_image("data/cat.png", 0, 0); |
| | | printf("Processing %dx%d image\n", im.h, im.w); |
| | | resize_network(net, im.h, im.w, im.c); |
| | | forward_network(net, im.data); |
| | | forward_network(net, im.data, 0); |
| | | |
| | | image out = get_network_image(net); |
| | | visualize_network(net); |
| | | cvWaitKey(1000); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | |
| | | { |
| | | int interval = 4; |
| | | int i,j; |
| | | network net = parse_network_cfg("cfg/voc_imagenet_nonorm.cfg"); |
| | | network net = parse_network_cfg("cfg/voc_imagenet.cfg"); |
| | | char image_path[1024]; |
| | | sprintf(image_path, "%s/%s",image_dir, image_file); |
| | | char out_path[1024]; |
| | | if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file); |
| | | else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file); |
| | | printf("%s\n", image_file); |
| | | FILE *fp = fopen(out_path, "w"); |
| | | if(fp == 0) file_error(out_path); |
| | | |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path); |
| | |
| | | ims[j+interval] = features_output_size(net, src, ex_h, ex_w); |
| | | } |
| | | } |
| | | FILE *fp = fopen(out_path, "w"); |
| | | if(fp == 0) file_error(out_path); |
| | | for(i = 0; i < max_scale+interval; ++i){ |
| | | image out = ims[i]; |
| | | fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w); |
| | | for(j = 0; j < out.c*out.h*out.w; ++j){ |
| | | if(j != 0)fprintf(fp, ","); |
| | | float o = out.data[j]; |
| | | //if(o < 0) o = 0; |
| | | if(o < 0) o = 0; |
| | | fprintf(fp, "%g", o); |
| | | } |
| | | fprintf(fp, "\n"); |
| | |
| | | // test_im2row(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | //test_nist(); |
| | | test_nist(); |
| | | //test_cifar10(); |
| | | //test_vince(); |
| | | //test_full(); |
| | | //train_VOC(); |
| | | features_VOC_image(argv[1], argv[2], argv[3], 0); |
| | | features_VOC_image(argv[1], argv[2], argv[3], 1); |
| | | //features_VOC_image(argv[1], argv[2], argv[3], 0); |
| | | //features_VOC_image(argv[1], argv[2], argv[3], 1); |
| | | //features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3])); |
| | | //visualize_imagenet_features("data/assira/train.list"); |
| | | //visualize_imagenet_topk("data/VOC2012.list"); |