| | |
| | | #include "image.h" |
| | | #include "data.h" |
| | | #include "utils.h" |
| | | #include "params.h" |
| | | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "freeweight_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | |
| | | network make_network(int n, int batch) |
| | | char *get_layer_string(LAYER_TYPE a) |
| | | { |
| | | switch(a){ |
| | | case CONVOLUTIONAL: |
| | | return "convolutional"; |
| | | case DECONVOLUTIONAL: |
| | | return "deconvolutional"; |
| | | case CONNECTED: |
| | | return "connected"; |
| | | case MAXPOOL: |
| | | return "maxpool"; |
| | | case SOFTMAX: |
| | | return "softmax"; |
| | | case DETECTION: |
| | | return "detection"; |
| | | case NORMALIZATION: |
| | | return "normalization"; |
| | | case DROPOUT: |
| | | return "dropout"; |
| | | case CROP: |
| | | return "crop"; |
| | | case COST: |
| | | return "cost"; |
| | | default: |
| | | break; |
| | | } |
| | | return "none"; |
| | | } |
| | | |
| | | network make_network(int n) |
| | | { |
| | | network net; |
| | | net.n = n; |
| | | net.batch = batch; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | net.seen = 0; |
| | | net.batch = 0; |
| | | net.inputs = 0; |
| | | net.h = net.w = net.c = 0; |
| | | #ifdef GPU |
| | | net.input_cl = calloc(1, sizeof(cl_mem)); |
| | | net.truth_cl = calloc(1, sizeof(cl_mem)); |
| | | net.input_gpu = calloc(1, sizeof(float *)); |
| | | net.truth_gpu = calloc(1, sizeof(float *)); |
| | | #endif |
| | | return net; |
| | | } |
| | | |
| | | |
| | | void forward_network(network net, float *input, float *truth, int train) |
| | | void forward_network(network net, network_state state) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | forward_convolutional_layer(layer, input); |
| | | input = layer.output; |
| | | forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | forward_detection_layer(*(detection_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer(layer, input); |
| | | input = layer.output; |
| | | forward_connected_layer(*(connected_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer(layer, input); |
| | | input = layer.output; |
| | | forward_crop_layer(*(crop_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | forward_cost_layer(layer, input, truth); |
| | | forward_cost_layer(*(cost_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | | input = layer.output; |
| | | forward_softmax_layer(*(softmax_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | forward_normalization_layer(layer, input); |
| | | input = layer.output; |
| | | forward_normalization_layer(*(normalization_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | if(!train) continue; |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | forward_dropout_layer(layer, input); |
| | | forward_dropout_layer(*(dropout_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | if(!train) continue; |
| | | freeweight_layer layer = *(freeweight_layer *)net.layers[i]; |
| | | forward_freeweight_layer(layer, input); |
| | | } |
| | | state.input = get_network_output_layer(net, i); |
| | | } |
| | | } |
| | | |
| | | void update_network(network net) |
| | | { |
| | | int i; |
| | | int update_batch = net.batch*net.subdivisions; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer(layer); |
| | | update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer); |
| | | update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | |
| | | float *get_network_output_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((convolutional_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | return ((deconvolutional_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((maxpool_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DETECTION){ |
| | | return ((detection_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((softmax_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_output_layer(net, i-1); |
| | | } else if(net.types[i] == FREEWEIGHT){ |
| | | return get_network_output_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((connected_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((crop_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((normalization_layer *)net.layers[i]) -> output; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float *get_network_output(network net) |
| | | { |
| | | int i; |
| | |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_delta_layer(net, i-1); |
| | | } else if(net.types[i] == FREEWEIGHT){ |
| | | if(i == 0) return 0; |
| | | return get_network_delta_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | float calculate_error_network(network net, float *truth) |
| | | { |
| | | float sum = 0; |
| | | float *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | int i; |
| | | for(i = 0; i < get_network_output_size(net)*net.batch; ++i){ |
| | | //if(i %get_network_output_size(net) == 0) printf("\n"); |
| | | //printf("%5.2f %5.2f, ", out[i], truth[i]); |
| | | //if(i == get_network_output_size(net)) printf("\n"); |
| | | delta[i] = truth[i] - out[i]; |
| | | //printf("%.10f, ", out[i]); |
| | | sum += delta[i]*delta[i]; |
| | | } |
| | | //printf("\n"); |
| | | return sum; |
| | | } |
| | | |
| | | int get_predicted_class_network(network net) |
| | | { |
| | | float *out = get_network_output(net); |
| | |
| | | return max_index(out, k); |
| | | } |
| | | |
| | | void backward_network(network net, float *input) |
| | | void backward_network(network net, network_state state) |
| | | { |
| | | int i; |
| | | float *prev_input; |
| | | float *prev_delta; |
| | | float *original_input = state.input; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(i == 0){ |
| | | prev_input = input; |
| | | prev_delta = 0; |
| | | state.input = original_input; |
| | | state.delta = 0; |
| | | }else{ |
| | | prev_input = get_network_output_layer(net, i-1); |
| | | prev_delta = get_network_delta_layer(net, i-1); |
| | | state.input = get_network_output_layer(net, i-1); |
| | | state.delta = get_network_delta_layer(net, i-1); |
| | | } |
| | | |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | backward_convolutional_layer(layer, prev_input, prev_delta); |
| | | backward_convolutional_layer(layer, state); |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | backward_deconvolutional_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_delta); |
| | | if(i != 0) backward_maxpool_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | backward_dropout_layer(layer, prev_delta); |
| | | backward_dropout_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | backward_detection_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_normalization_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | if(i != 0) backward_softmax_layer(layer, prev_delta); |
| | | if(i != 0) backward_softmax_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | backward_connected_layer(layer, prev_input, prev_delta); |
| | | backward_connected_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | backward_cost_layer(layer, prev_input, prev_delta); |
| | | backward_cost_layer(layer, state); |
| | | } |
| | | } |
| | | } |
| | |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
| | | #endif |
| | | forward_network(net, x, y, 1); |
| | | backward_network(net, x); |
| | | network_state state; |
| | | state.input = x; |
| | | state.truth = y; |
| | | state.train = 1; |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | float error = get_network_cost(net); |
| | | update_network(net); |
| | | if((net.seen/net.batch)%net.subdivisions == 0) update_network(net); |
| | | return error; |
| | | } |
| | | |
| | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | net.seen += batch; |
| | | get_random_batch(d, batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | net.seen += batch; |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | |
| | | float train_network_batch(network net, data d, int n) |
| | | { |
| | | int i,j; |
| | | network_state state; |
| | | state.train = 1; |
| | | float sum = 0; |
| | | int batch = 2; |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < batch; ++j){ |
| | | int index = rand()%d.X.rows; |
| | | float *x = d.X.vals[index]; |
| | | float *y = d.y.vals[index]; |
| | | forward_network(net, x, y, 1); |
| | | backward_network(net, x); |
| | | state.input = d.X.vals[index]; |
| | | state.truth = d.y.vals[index]; |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | sum += get_network_cost(net); |
| | | } |
| | | update_network(net); |
| | |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | void set_learning_network(network *net, float rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | | net->learning_rate=rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net->layers[i]; |
| | | layer->learning_rate=rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | } |
| | | else if(net->types[i] == CONNECTED){ |
| | | connected_layer *layer = (connected_layer *)net->layers[i]; |
| | | layer->learning_rate=rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void set_batch_network(network *net, int b) |
| | | { |
| | | net->batch = b; |
| | |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | }else if(net->types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net->layers[i]; |
| | |
| | | } else if(net->types[i] == DROPOUT){ |
| | | dropout_layer *layer = (dropout_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == FREEWEIGHT){ |
| | | freeweight_layer *layer = (freeweight_layer *) net->layers[i]; |
| | | } else if(net->types[i] == DETECTION){ |
| | | detection_layer *layer = (detection_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == SOFTMAX){ |
| | |
| | | cost_layer *layer = (cost_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == CROP){ |
| | | crop_layer *layer = (crop_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | |
| | | } else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.h*layer.w; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | freeweight_layer layer = *(freeweight_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | printf("Can't find input size\n"); |
| | | fprintf(stderr, "Can't find input size\n"); |
| | | return 0; |
| | | } |
| | | |
| | |
| | | image output = get_convolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | image output = get_deconvolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | return get_detection_layer_output_size(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.crop_height*layer.crop_width; |
| | | } |
| | |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | freeweight_layer layer = *(freeweight_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | printf("Can't find output size\n"); |
| | | fprintf(stderr, "Can't find output size\n"); |
| | | return 0; |
| | | } |
| | | |
| | |
| | | for (i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net.layers[i]; |
| | | resize_convolutional_layer(layer, h, w, c); |
| | | resize_convolutional_layer(layer, h, w); |
| | | image output = get_convolutional_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i]; |
| | | resize_deconvolutional_layer(layer, h, w); |
| | | image output = get_deconvolutional_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net.layers[i]; |
| | | resize_maxpool_layer(layer, h, w, c); |
| | | resize_maxpool_layer(layer, h, w); |
| | | image output = get_maxpool_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else if(net.types[i] == DROPOUT){ |
| | | dropout_layer *layer = (dropout_layer *)net.layers[i]; |
| | | resize_dropout_layer(layer, h*w*c); |
| | | }else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer *layer = (normalization_layer *)net.layers[i]; |
| | | resize_normalization_layer(layer, h, w, c); |
| | | resize_normalization_layer(layer, h, w); |
| | | image output = get_normalization_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return get_convolutional_image(layer); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return get_deconvolutional_image(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return get_maxpool_image(layer); |
| | |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return get_normalization_image(layer); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | return get_network_image_layer(net, i-1); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return get_crop_image(layer); |
| | |
| | | |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return network_predict_gpu(net, input); |
| | | #endif |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return network_predict_gpu(net, input); |
| | | #endif |
| | | |
| | | forward_network(net, input, 0, 0); |
| | | network_state state; |
| | | state.input = input; |
| | | state.truth = 0; |
| | | state.train = 0; |
| | | state.delta = 0; |
| | | forward_network(net, state); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | void compare_networks(network n1, network n2, data test) |
| | | { |
| | | matrix g1 = network_predict_data(n1, test); |
| | | matrix g2 = network_predict_data(n2, test); |
| | | int i; |
| | | int a,b,c,d; |
| | | a = b = c = d = 0; |
| | | for(i = 0; i < g1.rows; ++i){ |
| | | int truth = max_index(test.y.vals[i], test.y.cols); |
| | | int p1 = max_index(g1.vals[i], g1.cols); |
| | | int p2 = max_index(g2.vals[i], g2.cols); |
| | | if(p1 == truth){ |
| | | if(p2 == truth) ++d; |
| | | else ++c; |
| | | }else{ |
| | | if(p2 == truth) ++b; |
| | | else ++a; |
| | | } |
| | | } |
| | | printf("%5d %5d\n%5d %5d\n", a, b, c, d); |
| | | float num = pow((abs(b - c) - 1.), 2.); |
| | | float den = b + c; |
| | | printf("%f\n", num/den); |
| | | } |
| | | |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |