Joseph Redmon
2016-06-25 cf32e7e9b843560eb7ec3ed16e5b19f0f7156724
src/coco.c
@@ -1,50 +1,30 @@
#include <stdio.h>
#include "network.h"
#include "region_layer.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
#include "demo.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness);
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
void draw_coco(image im, int num, float thresh, box *boxes, float **probs, char *label)
{
    int classes = 80;
    int i;
    for(i = 0; i < num; ++i){
        int class = max_index(probs[i], classes);
        float prob = probs[i][class];
        if(prob > thresh){
            int width = sqrt(prob)*5 + 1;
            printf("%f %s\n", prob, coco_classes[class]);
            float red = get_color(0,class,classes);
            float green = get_color(1,class,classes);
            float blue = get_color(2,class,classes);
            box b = boxes[i];
            int left  = (b.x-b.w/2.)*im.w;
            int right = (b.x+b.w/2.)*im.w;
            int top   = (b.y-b.h/2.)*im.h;
            int bot   = (b.y+b.h/2.)*im.h;
            draw_box_width(im, left, top, right, bot, width, red, green, blue);
        }
    }
    show_image(im, label);
}
image coco_labels[80];
void train_coco(char *cfgfile, char *weightfile)
{
    //char *train_images = "/home/pjreddie/data/voc/test/train.txt";
    char *train_images = "/home/pjreddie/data/coco/train.txt";
    //char *train_images = "/home/pjreddie/data/coco/train.txt";
    char *train_images = "data/coco.trainval.txt";
    char *backup_directory = "/home/pjreddie/backup/";
    srand(time(0));
    data_seed = time(0);
@@ -121,34 +101,6 @@
    save_weights(net, buff);
}
void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
{
    int i,j,n;
    //int per_cell = 5*num+classes;
    for (i = 0; i < side*side; ++i){
        int row = i / side;
        int col = i % side;
        for(n = 0; n < num; ++n){
            int index = i*num + n;
            int p_index = side*side*classes + i*num + n;
            float scale = predictions[p_index];
            int box_index = side*side*(classes + num) + (i*num + n)*4;
            boxes[index].x = (predictions[box_index + 0] + col) / side * w;
            boxes[index].y = (predictions[box_index + 1] + row) / side * h;
            boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
            boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
            for(j = 0; j < classes; ++j){
                int class_index = i*classes;
                float prob = scale*predictions[class_index+j];
                probs[index][j] = (prob > thresh) ? prob : 0;
            }
            if(only_objectness){
                probs[index][0] = scale;
            }
        }
    }
}
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
    int i, j;
@@ -215,7 +167,7 @@
    int i=0;
    int t;
    float thresh = .001;
    float thresh = .01;
    int nms = 1;
    float iou_thresh = .5;
@@ -258,7 +210,7 @@
            float *predictions = network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
            convert_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
            print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h);
            free_image(val[t]);
@@ -321,7 +273,7 @@
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        float *predictions = network_predict(net, sized.data);
        convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
        convert_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
        char *labelpath = find_replace(path, "images", "labels");
@@ -366,9 +318,10 @@
    if(weightfile){
        load_weights(&net, weightfile);
    }
    region_layer l = net.layers[net.n-1];
    detection_layer l = net.layers[net.n-1];
    set_batch_network(&net, 1);
    srand(2222222);
    float nms = .4;
    clock_t time;
    char buff[256];
    char *input = buff;
@@ -392,8 +345,10 @@
        time=clock();
        float *predictions = network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
        draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs, "predictions");
        convert_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80);
        show_image(im, "predictions");
        show_image(sized, "resized");
        free_image(im);
@@ -408,7 +363,16 @@
void run_coco(int argc, char **argv)
{
    int i;
    for(i = 0; i < 80; ++i){
        char buff[256];
        sprintf(buff, "data/labels/%s.png", coco_classes[i]);
        coco_labels[i] = load_image_color(buff, 0, 0);
    }
    float thresh = find_float_arg(argc, argv, "-thresh", .2);
    int cam_index = find_int_arg(argc, argv, "-c", 0);
    int frame_skip = find_int_arg(argc, argv, "-s", 0);
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
@@ -421,4 +385,5 @@
    else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
    else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
    else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
    else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, coco_labels, 80, frame_skip);
}