| | |
| | | #include "activations.h" |
| | | #include "softmax_layer.h" |
| | | #include "blas.h" |
| | | #include "box.h" |
| | | #include "cuda.h" |
| | | #include "utils.h" |
| | | #include <stdio.h> |
| | | #include <string.h> |
| | | #include <stdlib.h> |
| | | |
| | | int get_detection_layer_locations(detection_layer layer) |
| | | int get_detection_layer_locations(detection_layer l) |
| | | { |
| | | return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background); |
| | | return l.inputs / (l.classes+l.coords+l.joint+(l.background || l.objectness)); |
| | | } |
| | | |
| | | int get_detection_layer_output_size(detection_layer layer) |
| | | int get_detection_layer_output_size(detection_layer l) |
| | | { |
| | | return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords); |
| | | return get_detection_layer_locations(l)*((l.background || l.objectness) + l.classes + l.coords); |
| | | } |
| | | |
| | | detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance) |
| | | detection_layer make_detection_layer(int batch, int inputs, int classes, int coords, int joint, int rescore, int background, int objectness) |
| | | { |
| | | detection_layer *layer = calloc(1, sizeof(detection_layer)); |
| | | detection_layer l = {0}; |
| | | l.type = DETECTION; |
| | | |
| | | layer->batch = batch; |
| | | layer->inputs = inputs; |
| | | layer->classes = classes; |
| | | layer->coords = coords; |
| | | layer->rescore = rescore; |
| | | layer->nuisance = nuisance; |
| | | layer->cost = calloc(1, sizeof(float)); |
| | | layer->does_cost=1; |
| | | layer->background = background; |
| | | int outputs = get_detection_layer_output_size(*layer); |
| | | layer->output = calloc(batch*outputs, sizeof(float)); |
| | | layer->delta = calloc(batch*outputs, sizeof(float)); |
| | | l.batch = batch; |
| | | l.inputs = inputs; |
| | | l.classes = classes; |
| | | l.coords = coords; |
| | | l.rescore = rescore; |
| | | l.objectness = objectness; |
| | | l.background = background; |
| | | l.joint = joint; |
| | | l.cost = calloc(1, sizeof(float)); |
| | | l.does_cost=1; |
| | | int outputs = get_detection_layer_output_size(l); |
| | | l.outputs = outputs; |
| | | l.output = calloc(batch*outputs, sizeof(float)); |
| | | l.delta = calloc(batch*outputs, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_gpu = cuda_make_array(0, batch*outputs); |
| | | layer->delta_gpu = cuda_make_array(0, batch*outputs); |
| | | l.output_gpu = cuda_make_array(0, batch*outputs); |
| | | l.delta_gpu = cuda_make_array(0, batch*outputs); |
| | | #endif |
| | | |
| | | fprintf(stderr, "Detection Layer\n"); |
| | | srand(0); |
| | | |
| | | return layer; |
| | | return l; |
| | | } |
| | | |
| | | void dark_zone(detection_layer layer, int class, int start, network_state state) |
| | | { |
| | | int index = start+layer.background+class; |
| | | int size = layer.classes+layer.coords+layer.background; |
| | | int location = (index%(7*7*size)) / size ; |
| | | int r = location / 7; |
| | | int c = location % 7; |
| | | int dr, dc; |
| | | for(dr = -1; dr <= 1; ++dr){ |
| | | for(dc = -1; dc <= 1; ++dc){ |
| | | if(!(dr || dc)) continue; |
| | | if((r + dr) > 6 || (r + dr) < 0) continue; |
| | | if((c + dc) > 6 || (c + dc) < 0) continue; |
| | | int di = (dr*7 + dc) * size; |
| | | if(state.truth[index+di]) continue; |
| | | layer.output[index + di] = 0; |
| | | //if(!state.truth[start+di]) continue; |
| | | //layer.output[start + di] = 1; |
| | | } |
| | | } |
| | | } |
| | | |
| | | typedef struct{ |
| | | float dx, dy, dw, dh; |
| | | } dbox; |
| | | |
| | | dbox derivative(box a, box b) |
| | | { |
| | | dbox d; |
| | | d.dx = 0; |
| | | d.dw = 0; |
| | | float l1 = a.x - a.w/2; |
| | | float l2 = b.x - b.w/2; |
| | | if (l1 > l2){ |
| | | d.dx -= 1; |
| | | d.dw += .5; |
| | | } |
| | | float r1 = a.x + a.w/2; |
| | | float r2 = b.x + b.w/2; |
| | | if(r1 < r2){ |
| | | d.dx += 1; |
| | | d.dw += .5; |
| | | } |
| | | if (l1 > r2) { |
| | | d.dx = -1; |
| | | d.dw = 0; |
| | | } |
| | | if (r1 < l2){ |
| | | d.dx = 1; |
| | | d.dw = 0; |
| | | } |
| | | |
| | | d.dy = 0; |
| | | d.dh = 0; |
| | | float t1 = a.y - a.h/2; |
| | | float t2 = b.y - b.h/2; |
| | | if (t1 > t2){ |
| | | d.dy -= 1; |
| | | d.dh += .5; |
| | | } |
| | | float b1 = a.y + a.h/2; |
| | | float b2 = b.y + b.h/2; |
| | | if(b1 < b2){ |
| | | d.dy += 1; |
| | | d.dh += .5; |
| | | } |
| | | if (t1 > b2) { |
| | | d.dy = -1; |
| | | d.dh = 0; |
| | | } |
| | | if (b1 < t2){ |
| | | d.dy = 1; |
| | | d.dh = 0; |
| | | } |
| | | return d; |
| | | } |
| | | |
| | | float overlap(float x1, float w1, float x2, float w2) |
| | | { |
| | | float l1 = x1 - w1/2; |
| | | float l2 = x2 - w2/2; |
| | | float left = l1 > l2 ? l1 : l2; |
| | | float r1 = x1 + w1/2; |
| | | float r2 = x2 + w2/2; |
| | | float right = r1 < r2 ? r1 : r2; |
| | | return right - left; |
| | | } |
| | | |
| | | float box_intersection(box a, box b) |
| | | { |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | if(w < 0 || h < 0) return 0; |
| | | float area = w*h; |
| | | return area; |
| | | } |
| | | |
| | | float box_union(box a, box b) |
| | | { |
| | | float i = box_intersection(a, b); |
| | | float u = a.w*a.h + b.w*b.h - i; |
| | | return u; |
| | | } |
| | | |
| | | float box_iou(box a, box b) |
| | | { |
| | | return box_intersection(a, b)/box_union(a, b); |
| | | } |
| | | |
| | | dbox dintersect(box a, box b) |
| | | { |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | dbox dover = derivative(a, b); |
| | | dbox di; |
| | | |
| | | di.dw = dover.dw*h; |
| | | di.dx = dover.dx*h; |
| | | di.dh = dover.dh*w; |
| | | di.dy = dover.dy*w; |
| | | if(h < 0 || w < 0){ |
| | | di.dx = dover.dx; |
| | | di.dy = dover.dy; |
| | | } |
| | | return di; |
| | | } |
| | | |
| | | dbox dunion(box a, box b) |
| | | { |
| | | dbox du = {0,0,0,0};; |
| | | float w = overlap(a.x, a.w, b.x, b.w); |
| | | float h = overlap(a.y, a.h, b.y, b.h); |
| | | if(w > 0 && h > 0){ |
| | | dbox di = dintersect(a, b); |
| | | du.dw = h - di.dw; |
| | | du.dh = w - di.dw; |
| | | du.dx = -di.dx; |
| | | du.dy = -di.dy; |
| | | } |
| | | return du; |
| | | } |
| | | |
| | | dbox diou(box a, box b) |
| | | { |
| | | float u = box_union(a,b); |
| | | float i = box_intersection(a,b); |
| | | dbox di = dintersect(a,b); |
| | | dbox du = dunion(a,b); |
| | | dbox dd = {0,0,0,0}; |
| | | if(i < 0) { |
| | | dd.dx = b.x - a.x; |
| | | dd.dy = b.y - a.y; |
| | | dd.dw = b.w - a.w; |
| | | dd.dh = b.h - a.h; |
| | | return dd; |
| | | } |
| | | dd.dx = 2*pow((1-(i/u)),1)*(di.dx*u - du.dx*i)/(u*u); |
| | | dd.dy = 2*pow((1-(i/u)),1)*(di.dy*u - du.dy*i)/(u*u); |
| | | dd.dw = 2*pow((1-(i/u)),1)*(di.dw*u - du.dw*i)/(u*u); |
| | | dd.dh = 2*pow((1-(i/u)),1)*(di.dh*u - du.dh*i)/(u*u); |
| | | return dd; |
| | | } |
| | | |
| | | void test_box() |
| | | { |
| | | box a = {1, 1, 1, 1}; |
| | | box b = {0, 0, .5, .2}; |
| | | int count = 0; |
| | | while(count++ < 300){ |
| | | dbox d = diou(a, b); |
| | | printf("%f %f %f %f\n", a.x, a.y, a.w, a.h); |
| | | a.x += .1*d.dx; |
| | | a.w += .1*d.dw; |
| | | a.y += .1*d.dy; |
| | | a.h += .1*d.dh; |
| | | printf("inter: %f\n", box_intersection(a, b)); |
| | | printf("union: %f\n", box_union(a, b)); |
| | | printf("IOU: %f\n", box_iou(a, b)); |
| | | if(d.dx==0 && d.dw==0 && d.dy==0 && d.dh==0) { |
| | | printf("break!!!\n"); |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer layer, network_state state) |
| | | void forward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | int locations = get_detection_layer_locations(layer); |
| | | int locations = get_detection_layer_locations(l); |
| | | int i,j; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]); |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | int mask = (!state.truth || state.truth[out_i + (l.background || l.objectness) + l.classes + 2]); |
| | | float scale = 1; |
| | | if(layer.rescore) scale = state.input[in_i++]; |
| | | else if(layer.nuisance){ |
| | | layer.output[out_i++] = 1-state.input[in_i++]; |
| | | if(l.joint) scale = state.input[in_i++]; |
| | | else if(l.objectness){ |
| | | l.output[out_i++] = 1-state.input[in_i++]; |
| | | scale = mask; |
| | | } |
| | | else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++]; |
| | | else if(l.background) l.output[out_i++] = scale*state.input[in_i++]; |
| | | |
| | | for(j = 0; j < layer.classes; ++j){ |
| | | layer.output[out_i++] = scale*state.input[in_i++]; |
| | | for(j = 0; j < l.classes; ++j){ |
| | | l.output[out_i++] = scale*state.input[in_i++]; |
| | | } |
| | | if(layer.nuisance){ |
| | | |
| | | }else if(layer.background){ |
| | | softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background); |
| | | activate_array(state.input+in_i, layer.coords, LOGISTIC); |
| | | if(l.objectness){ |
| | | |
| | | }else if(l.background){ |
| | | softmax_array(l.output + out_i - l.classes-l.background, l.classes+l.background, l.output + out_i - l.classes-l.background); |
| | | activate_array(state.input+in_i, l.coords, LOGISTIC); |
| | | } |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | layer.output[out_i++] = mask*state.input[in_i++]; |
| | | for(j = 0; j < l.coords; ++j){ |
| | | l.output[out_i++] = mask*state.input[in_i++]; |
| | | } |
| | | } |
| | | if(layer.does_cost){ |
| | | *(layer.cost) = 0; |
| | | int size = get_detection_layer_output_size(layer) * layer.batch; |
| | | memset(layer.delta, 0, size * sizeof(float)); |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int classes = layer.nuisance+layer.classes; |
| | | int offset = i*(classes+layer.coords); |
| | | for(j = offset; j < offset+classes; ++j){ |
| | | *(layer.cost) += pow(state.truth[j] - layer.output[j], 2); |
| | | layer.delta[j] = state.truth[j] - layer.output[j]; |
| | | float avg_iou = 0; |
| | | int count = 0; |
| | | if(l.does_cost && state.train){ |
| | | *(l.cost) = 0; |
| | | int size = get_detection_layer_output_size(l) * l.batch; |
| | | memset(l.delta, 0, size * sizeof(float)); |
| | | for (i = 0; i < l.batch*locations; ++i) { |
| | | int classes = l.objectness+l.classes; |
| | | int offset = i*(classes+l.coords); |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | *(l.cost) += pow(state.truth[j] - l.output[j], 2); |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | } |
| | | |
| | | box truth; |
| | | truth.x = state.truth[j+0]; |
| | | truth.y = state.truth[j+1]; |
| | | truth.w = state.truth[j+2]; |
| | | truth.h = state.truth[j+3]; |
| | | truth.x = state.truth[j+0]/7; |
| | | truth.y = state.truth[j+1]/7; |
| | | truth.w = pow(state.truth[j+2], 2); |
| | | truth.h = pow(state.truth[j+3], 2); |
| | | box out; |
| | | out.x = layer.output[j+0]; |
| | | out.y = layer.output[j+1]; |
| | | out.w = layer.output[j+2]; |
| | | out.h = layer.output[j+3]; |
| | | out.x = l.output[j+0]/7; |
| | | out.y = l.output[j+1]/7; |
| | | out.w = pow(l.output[j+2], 2); |
| | | out.h = pow(l.output[j+3], 2); |
| | | |
| | | if(!(truth.w*truth.h)) continue; |
| | | float iou = box_iou(truth, out); |
| | | //printf("iou: %f\n", iou); |
| | | *(layer.cost) += pow((1-iou), 2); |
| | | dbox d = diou(out, truth); |
| | | layer.delta[j+0] = d.dx; |
| | | layer.delta[j+1] = d.dy; |
| | | layer.delta[j+2] = d.dw; |
| | | layer.delta[j+3] = d.dh; |
| | | float iou = box_iou(out, truth); |
| | | avg_iou += iou; |
| | | ++count; |
| | | dbox delta = diou(out, truth); |
| | | |
| | | l.delta[j+0] = 10 * delta.dx/7; |
| | | l.delta[j+1] = 10 * delta.dy/7; |
| | | l.delta[j+2] = 10 * delta.dw * 2 * sqrt(out.w); |
| | | l.delta[j+3] = 10 * delta.dh * 2 * sqrt(out.h); |
| | | |
| | | |
| | | *(l.cost) += pow((1-iou), 2); |
| | | l.delta[j+0] = 4 * (state.truth[j+0] - l.output[j+0]); |
| | | l.delta[j+1] = 4 * (state.truth[j+1] - l.output[j+1]); |
| | | l.delta[j+2] = 4 * (state.truth[j+2] - l.output[j+2]); |
| | | l.delta[j+3] = 4 * (state.truth[j+3] - l.output[j+3]); |
| | | if(l.rescore){ |
| | | for (j = offset; j < offset+classes; ++j) { |
| | | if(state.truth[j]) state.truth[j] = iou; |
| | | l.delta[j] = state.truth[j] - l.output[j]; |
| | | } |
| | | } |
| | | } |
| | | printf("Avg IOU: %f\n", avg_iou/count); |
| | | } |
| | | /* |
| | | int count = 0; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | for(j = 0; j < layer.classes+layer.background; ++j){ |
| | | printf("%f, ", layer.output[count++]); |
| | | } |
| | | printf("\n"); |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | printf("%f, ", layer.output[count++]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | */ |
| | | /* |
| | | if(layer.background || 1){ |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int index = i*(layer.classes+layer.coords+layer.background); |
| | | for(j= 0; j < layer.classes; ++j){ |
| | | if(state.truth[index+j+layer.background]){ |
| | | //dark_zone(layer, j, index, state); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | */ |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer layer, network_state state) |
| | | void backward_detection_layer(const detection_layer l, network_state state) |
| | | { |
| | | int locations = get_detection_layer_locations(layer); |
| | | int locations = get_detection_layer_locations(l); |
| | | int i,j; |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | for(i = 0; i < l.batch*locations; ++i){ |
| | | float scale = 1; |
| | | float latent_delta = 0; |
| | | if(layer.rescore) scale = state.input[in_i++]; |
| | | else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++]; |
| | | else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++]; |
| | | for(j = 0; j < layer.classes; ++j){ |
| | | latent_delta += state.input[in_i]*layer.delta[out_i]; |
| | | state.delta[in_i++] = scale*layer.delta[out_i++]; |
| | | if(l.joint) scale = state.input[in_i++]; |
| | | else if (l.objectness) state.delta[in_i++] += -l.delta[out_i++]; |
| | | else if (l.background) state.delta[in_i++] += scale*l.delta[out_i++]; |
| | | for(j = 0; j < l.classes; ++j){ |
| | | latent_delta += state.input[in_i]*l.delta[out_i]; |
| | | state.delta[in_i++] += scale*l.delta[out_i++]; |
| | | } |
| | | |
| | | if (layer.nuisance) { |
| | | if (l.objectness) { |
| | | |
| | | }else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | state.delta[in_i++] = layer.delta[out_i++]; |
| | | }else if (l.background) gradient_array(l.output + out_i, l.coords, LOGISTIC, l.delta + out_i); |
| | | for(j = 0; j < l.coords; ++j){ |
| | | state.delta[in_i++] += l.delta[out_i++]; |
| | | } |
| | | if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta; |
| | | if(l.joint) state.delta[in_i-l.coords-l.classes-l.joint] += latent_delta; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_detection_layer_gpu(const detection_layer layer, network_state state) |
| | | void forward_detection_layer_gpu(const detection_layer l, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | int outputs = get_detection_layer_output_size(l); |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(layer.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); |
| | | truth_cpu = calloc(l.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); |
| | | } |
| | | cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_detection_layer(layer, cpu_state); |
| | | cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); |
| | | cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*outputs); |
| | | forward_detection_layer(l, cpu_state); |
| | | cuda_push_array(l.output_gpu, l.output, l.batch*outputs); |
| | | cuda_push_array(l.delta_gpu, l.delta, l.batch*outputs); |
| | | free(cpu_state.input); |
| | | if(cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | | |
| | | void backward_detection_layer_gpu(detection_layer layer, network_state state) |
| | | void backward_detection_layer_gpu(detection_layer l, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | int outputs = get_detection_layer_output_size(l); |
| | | |
| | | float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *delta_cpu = calloc(l.batch*l.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(layer.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); |
| | | truth_cpu = calloc(l.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, l.batch*outputs); |
| | | } |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.delta = delta_cpu; |
| | | |
| | | cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs); |
| | | backward_detection_layer(layer, cpu_state); |
| | | cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); |
| | | cuda_pull_array(state.delta, delta_cpu, l.batch*l.inputs); |
| | | cuda_pull_array(l.delta_gpu, l.delta, l.batch*outputs); |
| | | backward_detection_layer(l, cpu_state); |
| | | cuda_push_array(state.delta, delta_cpu, l.batch*l.inputs); |
| | | |
| | | free(in_cpu); |
| | | free(delta_cpu); |