Joseph Redmon
2015-07-21 d00f0a1ccd2a9b1c332bbf7754f291dd61dee14f
src/network.c
@@ -12,6 +12,7 @@
#include "detection_layer.h"
#include "normalization_layer.h"
#include "maxpool_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
@@ -28,6 +29,8 @@
            return "connected";
        case MAXPOOL:
            return "maxpool";
        case AVGPOOL:
            return "avgpool";
        case SOFTMAX:
            return "softmax";
        case DETECTION:
@@ -65,6 +68,9 @@
    int i;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.delta){
            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
        }
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
@@ -83,6 +89,8 @@
            forward_softmax_layer(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer(l, state);
        } else if(l.type == AVGPOOL){
            forward_avgpool_layer(l, state);
        } else if(l.type == DROPOUT){
            forward_dropout_layer(l, state);
        } else if(l.type == ROUTE){
@@ -156,6 +164,8 @@
            backward_normalization_layer(l, state);
        } else if(l.type == MAXPOOL){
            if(i != 0) backward_maxpool_layer(l, state);
        } else if(l.type == AVGPOOL){
            backward_avgpool_layer(l, state);
        } else if(l.type == DROPOUT){
            backward_dropout_layer(l, state);
        } else if(l.type == DETECTION){
@@ -273,6 +283,9 @@
            resize_convolutional_layer(&l, w, h);
        }else if(l.type == MAXPOOL){
            resize_maxpool_layer(&l, w, h);
        }else if(l.type == AVGPOOL){
            resize_avgpool_layer(&l, w, h);
            break;
        }else if(l.type == NORMALIZATION){
            resize_normalization_layer(&l, w, h);
        }else{