Joseph Redmon
2014-11-18 d407bffde934ea4c1ee392f24cdf26d9a987199b
src/parser.c
@@ -5,12 +5,14 @@
#include "parser.h"
#include "activations.h"
#include "crop_layer.h"
#include "cost_layer.h"
#include "convolutional_layer.h"
#include "connected_layer.h"
#include "maxpool_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "freeweight_layer.h"
#include "list.h"
#include "option_list.h"
#include "utils.h"
@@ -24,8 +26,10 @@
int is_connected(section *s);
int is_maxpool(section *s);
int is_dropout(section *s);
int is_freeweight(section *s);
int is_softmax(section *s);
int is_crop(section *s);
int is_cost(section *s);
int is_normalization(section *s);
list *read_cfg(char *filename);
@@ -63,7 +67,6 @@
convolutional_layer *parse_convolutional(list *options, network *net, int count)
{
    int i;
    int h,w,c;
    float learning_rate, momentum, decay;
    int n = option_find_int(options, "filters",1);
@@ -94,34 +97,19 @@
        if(h == 0) error("Layer before convolutional layer must output image.");
    }
    convolutional_layer *layer = make_convolutional_layer(net->batch,h,w,c,n,size,stride,pad,activation,learning_rate,momentum,decay);
    char *data = option_find_str(options, "data", 0);
    if(data){
        char *curr = data;
        char *next = data;
        for(i = 0; i < n; ++i){
            while(*++next !='\0' && *next != ',');
            *next = '\0';
            sscanf(curr, "%g", &layer->biases[i]);
            curr = next+1;
        }
        for(i = 0; i < c*n*size*size; ++i){
            while(*++next !='\0' && *next != ',');
            *next = '\0';
            sscanf(curr, "%g", &layer->filters[i]);
            curr = next+1;
        }
    }
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(biases, layer->biases, n);
    parse_data(weights, layer->filters, c*n*size*size);
    parse_data(biases, layer->biases, n);
    #ifdef GPU
    push_convolutional_layer(*layer);
    #endif
    option_unused(options);
    return layer;
}
connected_layer *parse_connected(list *options, network *net, int count)
{
    int i;
    int input;
    float learning_rate, momentum, decay;
    int output = option_find_int(options, "output",1);
@@ -143,27 +131,13 @@
        input =  get_network_output_size_layer(*net, count-1);
    }
    connected_layer *layer = make_connected_layer(net->batch, input, output, activation,learning_rate,momentum,decay);
    char *data = option_find_str(options, "data", 0);
    if(data){
        char *curr = data;
        char *next = data;
        for(i = 0; i < output; ++i){
            while(*++next !='\0' && *next != ',');
            *next = '\0';
            sscanf(curr, "%g", &layer->biases[i]);
            curr = next+1;
        }
        for(i = 0; i < input*output; ++i){
            while(*++next !='\0' && *next != ',');
            *next = '\0';
            sscanf(curr, "%g", &layer->weights[i]);
            curr = next+1;
        }
    }
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
    parse_data(biases, layer->biases, output);
    parse_data(weights, layer->weights, input*output);
    #ifdef GPU
    push_connected_layer(*layer);
    #endif
    option_unused(options);
    return layer;
}
@@ -182,6 +156,20 @@
    return layer;
}
cost_layer *parse_cost(list *options, network *net, int count)
{
    int input;
    if(count == 0){
        input = option_find_int(options, "input",1);
        net->batch = option_find_int(options, "batch",1);
    }else{
        input =  get_network_output_size_layer(*net, count-1);
    }
    cost_layer *layer = make_cost_layer(net->batch, input);
    option_unused(options);
    return layer;
}
crop_layer *parse_crop(list *options, network *net, int count)
{
    float learning_rate, momentum, decay;
@@ -234,6 +222,20 @@
    return layer;
}
freeweight_layer *parse_freeweight(list *options, network *net, int count)
{
    int input;
    if(count == 0){
        net->batch = option_find_int(options, "batch",1);
        input = option_find_int(options, "input",1);
    }else{
        input =  get_network_output_size_layer(*net, count-1);
    }
    freeweight_layer *layer = make_freeweight_layer(net->batch,input);
    option_unused(options);
    return layer;
}
dropout_layer *parse_dropout(list *options, network *net, int count)
{
    int input;
@@ -295,6 +297,10 @@
            crop_layer *layer = parse_crop(options, &net, count);
            net.types[count] = CROP;
            net.layers[count] = layer;
        }else if(is_cost(s)){
            cost_layer *layer = parse_cost(options, &net, count);
            net.types[count] = COST;
            net.layers[count] = layer;
        }else if(is_softmax(s)){
            softmax_layer *layer = parse_softmax(options, &net, count);
            net.types[count] = SOFTMAX;
@@ -311,6 +317,10 @@
            dropout_layer *layer = parse_dropout(options, &net, count);
            net.types[count] = DROPOUT;
            net.layers[count] = layer;
        }else if(is_freeweight(s)){
            freeweight_layer *layer = parse_freeweight(options, &net, count);
            net.types[count] = FREEWEIGHT;
            net.layers[count] = layer;
        }else{
            fprintf(stderr, "Type not recognized: %s\n", s->type);
        }
@@ -328,6 +338,10 @@
{
    return (strcmp(s->type, "[crop]")==0);
}
int is_cost(section *s)
{
    return (strcmp(s->type, "[cost]")==0);
}
int is_convolutional(section *s)
{
    return (strcmp(s->type, "[conv]")==0
@@ -347,6 +361,10 @@
{
    return (strcmp(s->type, "[dropout]")==0);
}
int is_freeweight(section *s)
{
    return (strcmp(s->type, "[freeweight]")==0);
}
int is_softmax(section *s)
{
@@ -447,6 +465,25 @@
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    fprintf(fp, "\n\n");
}
void print_freeweight_cfg(FILE *fp, freeweight_layer *l, network net, int count)
{
    fprintf(fp, "[freeweight]\n");
    if(count == 0){
        fprintf(fp, "batch=%d\ninput=%d\n",l->batch, l->inputs);
    }
    fprintf(fp, "\n");
}
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
{
    fprintf(fp, "[dropout]\n");
    if(count == 0){
        fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    }
    fprintf(fp, "probability=%g\n\n", l->probability);
}
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
{
    int i;
@@ -526,6 +563,14 @@
    fprintf(fp, "\n");
}
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
{
    fprintf(fp, "[cost]\n");
    if(count == 0) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    fprintf(fp, "\n");
}
void save_network(network net, char *filename)
{
    FILE *fp = fopen(filename, "w");
@@ -541,10 +586,16 @@
            print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
        else if(net.types[i] == MAXPOOL)
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
        else if(net.types[i] == FREEWEIGHT)
            print_freeweight_cfg(fp, (freeweight_layer *)net.layers[i], net, i);
        else if(net.types[i] == DROPOUT)
            print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
        else if(net.types[i] == NORMALIZATION)
            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
        else if(net.types[i] == SOFTMAX)
            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
        else if(net.types[i] == COST)
            print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
    }
    fclose(fp);
}