| | |
| | | import random |
| | | import math |
| | | import cv2 |
| | | import numpy as np |
| | | import imutils |
| | | import pandas as pd |
| | | import fetch_data |
| | | import generate_data |
| | | from shapely import geometry |
| | | import pytesseract |
| | | |
| | | card_mask = cv2.imread('data/mask.png') |
| | | |
| | | |
| | | def key_pts_to_yolo(key_pts, w_img, h_img): |
| | | """ |
| | | Convert a list of keypoints into a yolo training format |
| | | :param key_pts: list of keypoints |
| | | :param w_img: width of the entire image |
| | | :param h_img: height of the entire image |
| | | :return: <x> <y> <width> <height> |
| | | """ |
| | | x1 = min([pt[0] for pt in key_pts]) |
| | | x2 = max([pt[0] for pt in key_pts]) |
| | | y1 = min([pt[1] for pt in key_pts]) |
| | | y2 = max([pt[1] for pt in key_pts]) |
| | | x = (x2 + x1) / 2 / w_img |
| | | y = (y2 + y1) / 2 / h_img |
| | | width = (x2 - x1) / w_img |
| | | height = (y2 - y1) / h_img |
| | | return x, y, width, height |
| | | |
| | | |
| | | class ImageGenerator: |
| | | """ |
| | | A template for generating a training image. |
| | | """ |
| | | def __init__(self, img_bg, cards): |
| | | def __init__(self, img_bg, cards, width, height): |
| | | """ |
| | | :param img_bg: background (textile) image |
| | | :param cards: list of Card objects |
| | | :param width: width of the training image |
| | | :param height: height of the training image |
| | | """ |
| | | self._img_bg = img_bg |
| | | self._cards = cards |
| | | self._img_result = None |
| | | self.img_bg = img_bg |
| | | self.cards = cards |
| | | self.img_result = None |
| | | self.width = width |
| | | self.height = height |
| | | pass |
| | | |
| | | def generate_horizontal_span(self): |
| | | def add_card(self, card, x=None, y=None, theta=0.0, scale=1.0): |
| | | """ |
| | | Add a card to this generator scenario. |
| | | :param card: card to be added |
| | | :param x: new X-coordinate for the centre of the card |
| | | :param y: new Y-coordinate for the centre of the card |
| | | :param theta: new angle for the card |
| | | :param scale: new scale for the card |
| | | :return: none |
| | | """ |
| | | if x is None: |
| | | x = -len(card.img[0]) / 2 |
| | | if y is None: |
| | | y = -len(card.img) / 2 |
| | | self.cards.append(card) |
| | | card.x = x |
| | | card.y = y |
| | | card.theta = theta |
| | | card.scale = scale |
| | | pass |
| | | |
| | | def display(self, debug=False): |
| | | """ |
| | | Display the current state of the generator |
| | | :return: none |
| | | """ |
| | | self.check_visibility() |
| | | img_result = cv2.resize(self.img_bg, (self.width, self.height)) |
| | | |
| | | for card in self.cards: |
| | | if card.x == 0.0 and card.y == 0.0 and card.theta == 0.0 and card.scale == 1.0: |
| | | continue |
| | | card_x = int(card.x + 0.5) |
| | | card_y = int(card.y + 0.5) |
| | | print(card_x, card_y, card.theta, card.scale) |
| | | |
| | | # Scale & rotate card image |
| | | img_card = cv2.resize(card.img, (int(len(card.img[0]) * card.scale), int(len(card.img) * card.scale))) |
| | | mask_scale = cv2.resize(card_mask, (int(len(card_mask[0]) * card.scale), int(len(card_mask) * card.scale))) |
| | | img_mask = cv2.bitwise_and(img_card, mask_scale) |
| | | img_rotate = imutils.rotate_bound(img_mask, card.theta / math.pi * 180) |
| | | |
| | | # Calculate the position of the card image in relation to the background |
| | | # Crop the card image if it's out of boundary |
| | | card_w = len(img_rotate[0]) |
| | | card_h = len(img_rotate) |
| | | card_crop_x1 = max(0, card_w // 2 - card_x) |
| | | card_crop_x2 = min(card_w, card_w // 2 + len(img_result[0]) - card_x) |
| | | card_crop_y1 = max(0, card_h // 2 - card_y) |
| | | card_crop_y2 = min(card_h, card_h // 2 + len(img_result) - card_y) |
| | | img_card_crop = img_rotate[card_crop_y1:card_crop_y2, card_crop_x1:card_crop_x2] |
| | | |
| | | # Calculate the position of the corresponding area in the background |
| | | bg_crop_x1 = max(0, card_x - (card_w // 2)) |
| | | bg_crop_x2 = min(len(img_result[0]), int(card_x + (card_w / 2) + 0.5)) |
| | | bg_crop_y1 = max(0, card_y - (card_h // 2)) |
| | | bg_crop_y2 = min(len(img_result), int(card_y + (card_h / 2) + 0.5)) |
| | | img_result_crop = img_result[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2] |
| | | |
| | | # Override the background with the current card |
| | | img_result_crop = np.where(img_card_crop, img_card_crop, img_result_crop) |
| | | img_result[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2] = img_result_crop |
| | | |
| | | if debug: |
| | | for ext_obj in card.objects: |
| | | if ext_obj.visible: |
| | | for pt in ext_obj.key_pts: |
| | | cv2.circle(img_result, card.coordinate_in_generator(pt[0], pt[1]), 2, (0, 0, 255), 2) |
| | | bounding_box = card.bb_in_generator(ext_obj.key_pts) |
| | | cv2.rectangle(img_result, bounding_box[0], bounding_box[2], (0, 255, 0), 2) |
| | | |
| | | try: |
| | | text = pytesseract.image_to_string(img_result, output_type=pytesseract.Output.DICT) |
| | | print(text) |
| | | except pytesseract.pytesseract.TesseractError: |
| | | pass |
| | | img_result = cv2.GaussianBlur(img_result, (5, 5), 0) |
| | | cv2.imshow('Result', img_result) |
| | | cv2.waitKey(0) |
| | | self.img_result = img_result |
| | | pass |
| | | |
| | | def generate_horizontal_span(self, gap=None, scale=None, shift=None, jitter=None): |
| | | """ |
| | | Generating the first scenario where the cards are laid out in a straight horizontal line |
| | | :return: none |
| | | """ |
| | | # Set scale of the cards, variance of shift & jitter to be applied if they're not given |
| | | card_size = (len(self.cards[0].img[0]), len(self.cards[0].img)) |
| | | if scale is None: |
| | | # Scale the cards so that card takes about 50% of the image's height |
| | | coverage_ratio = 0.5 |
| | | scale = self.height * coverage_ratio / card_size[1] |
| | | if shift is None: |
| | | # Plus minus 5% of the card's height |
| | | shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05] |
| | | pass |
| | | if jitter is None: |
| | | jitter = [-math.pi / 18, math.pi / 18] # Plus minus 10 degrees |
| | | if gap is None: |
| | | # 25% of the card's width - set symbol and 1-2 mana symbols will be visible on each card |
| | | gap = card_size[0] * scale * 0.25 |
| | | |
| | | # Determine the location of the first card |
| | | # The cards will cover (width of a card + (# of cards - 1) * gap) pixels wide and (height of a card) pixels high |
| | | x_anchor = int(self.width / 2 + (len(self.cards) - 1) * gap / 2) |
| | | y_anchor = self.height // 2 |
| | | for card in self.cards: |
| | | card.scale = scale |
| | | card.x = x_anchor |
| | | card.y = y_anchor |
| | | card.theta = 0 |
| | | card.shift(shift, shift) |
| | | card.rotate(jitter) |
| | | x_anchor -= gap |
| | | pass |
| | | |
| | | def generate_vertical_span(self): |
| | | def generate_vertical_span(self, gap=None, scale=None, shift=None, jitter=None): |
| | | """ |
| | | Generating the second scenario where the cards are laid out in a straight vertical line |
| | | :return: none |
| | | """ |
| | | # Set scale of the cards, variance of shift & jitter to be applied if they're not given |
| | | card_size = (len(self.cards[0].img[0]), len(self.cards[0].img)) |
| | | if scale is None: |
| | | # Scale the cards so that card takes about 50% of the image's height |
| | | coverage_ratio = 0.5 |
| | | scale = self.height * coverage_ratio / card_size[1] |
| | | if shift is None: |
| | | # Plus minus 5% of the card's height |
| | | shift = [-card_size[1] * scale * 0.05, card_size[1] * scale * 0.05] |
| | | pass |
| | | if jitter is None: |
| | | # Plus minus 5 degrees |
| | | jitter = [-math.pi / 36, math.pi / 36] |
| | | if gap is None: |
| | | # 15% of the card's height - the title bar (with mana symbols) will be visible |
| | | gap = card_size[1] * scale * 0.15 |
| | | |
| | | # Determine the location of the first card |
| | | # The cards will cover (width of a card) pixels wide and (height of a card + (# of cards - 1) * gap) pixels high |
| | | x_anchor = self.width // 2 |
| | | y_anchor = int(self.height / 2 - (len(self.cards) - 1) * gap / 2) |
| | | for card in self.cards: |
| | | card.scale = scale |
| | | card.x = x_anchor |
| | | card.y = y_anchor |
| | | card.theta = 0 |
| | | card.shift(shift, shift) |
| | | card.rotate(jitter) |
| | | y_anchor += gap |
| | | pass |
| | | |
| | | def generate_fan_out(self): |
| | | pass |
| | | |
| | | def generate_fan_out(self, centre, theta_between_cards=None, scale=None, shift=None, jitter=None): |
| | | """ |
| | | Generating the third scenario where the cards are laid out in a fan shape |
| | | :return: none |
| | | """ |
| | | pass |
| | | |
| | | def export_training_data(self, out_dir): |
| | | def generate_non_obstructive(self, tolerance=0.85, scale=None): |
| | | """ |
| | | Generating the fourth scenario where the cards are laid in arbitrary position that doesn't obstruct other cards |
| | | :param tolerance: minimum level of visibility for each cards |
| | | :return: |
| | | """ |
| | | card_size = (len(self.cards[0].img[0]), len(self.cards[0].img)) |
| | | if scale is None: |
| | | # Total area of the cards should cover about 25-40% of the entire image, depending on the number of cards |
| | | scale = math.sqrt(self.width * self.height * min(0.25 + 0.02 * len(self.cards), 0.4) |
| | | / (card_size[0] * card_size[1] * len(self.cards))) |
| | | # Position each card at random location that doesn't obstruct other cards |
| | | for i in range(len(self.cards)): |
| | | card = self.cards[i] |
| | | card.scale = scale |
| | | while True: |
| | | card.x = random.uniform(card_size[1] * scale / 2, self.width - card_size[1] * scale) |
| | | card.y = random.uniform(card_size[1] * scale / 2, self.height - card_size[1] * scale) |
| | | card.theta = random.uniform(-math.pi, math.pi) |
| | | self.check_visibility(self.cards[:i + 1], visibility=tolerance) |
| | | # This position is not obstructive if all of the cards are visible |
| | | is_visible = [other_card.objects[0].visible for other_card in self.cards[:i + 1]] |
| | | non_obstructive = all(is_visible) |
| | | if non_obstructive: |
| | | break |
| | | |
| | | def check_visibility(self, cards=None, i_check=None, visibility=0.5): |
| | | """ |
| | | Check whether if extracted objects in each card are visible in the current scenario, and update their status |
| | | :param cards: list of cards (in a correct order) |
| | | :param i_check: indices of cards that needs to be checked. Cards that aren't in this list will only be used |
| | | to check visibility of other cards. All cards are checked by default. |
| | | :param visibility: minimum ratio of the object's area that aren't covered by another card to be visible |
| | | :return: none |
| | | """ |
| | | if cards is None: |
| | | cards = self.cards |
| | | if i_check is None: |
| | | i_check = range(len(cards)) |
| | | card_poly_list = [geometry.Polygon([card.coordinate_in_generator(0, 0), |
| | | card.coordinate_in_generator(0, len(card.img)), |
| | | card.coordinate_in_generator(len(card.img[0]), len(card.img)), |
| | | card.coordinate_in_generator(len(card.img[0]), 0)]) for card in self.cards] |
| | | template_poly = geometry.Polygon([(0, 0), (self.width, 0), (self.width, self.height), (0, self.height)]) |
| | | |
| | | # First card in the list is overlaid on the bottom of the card pile |
| | | for i in i_check: |
| | | card = cards[i] |
| | | for ext_obj in card.objects: |
| | | obj_poly = geometry.Polygon([card.coordinate_in_generator(pt[0], pt[1]) for pt in ext_obj.key_pts]) |
| | | obj_area = obj_poly.area |
| | | # Check if the other cards are blocking this object or if it's out of the template |
| | | for card_poly in card_poly_list[i + 1:]: |
| | | obj_poly = obj_poly.difference(card_poly) |
| | | obj_poly = obj_poly.intersection(template_poly) |
| | | visible_area = obj_poly.area |
| | | #print(visible_area, obj_area, len(card.img[0]) * len(card.img) * card.scale * card.scale) |
| | | #print("%s: %.1f visible" % (ext_obj.label, visible_area / obj_area * 100)) |
| | | ext_obj.visible = obj_area * visibility <= visible_area |
| | | |
| | | def export_training_data(self, out_name): |
| | | """ |
| | | Export the generated training image along with the txt file for all bounding boxes |
| | | :return: none |
| | | """ |
| | | cv2.imwrite(out_name + '.jpg', self.img_result) |
| | | out_txt = open(out_name+ '.txt', 'w') |
| | | for card in self.cards: |
| | | for ext_obj in card.objects: |
| | | if not ext_obj.visible: |
| | | continue |
| | | coords_in_gen = [card.coordinate_in_generator(key_pt[0], key_pt[1]) for key_pt in ext_obj.key_pts] |
| | | obj_yolo_info = key_pts_to_yolo(coords_in_gen, self.width, self.height) |
| | | if ext_obj.label == 'card': |
| | | out_txt.write('0 %.6f %.6f %.6f %.6f\n' % obj_yolo_info) |
| | | pass |
| | | elif ext_obj.label[:ext_obj.label.find[':']] == 'mana_symbol': |
| | | # TODO |
| | | pass |
| | | elif ext_obj.label[:ext_obj.label.find[':']] == 'set_symbol': |
| | | # TODO |
| | | pass |
| | | out_txt.close() |
| | | pass |
| | | |
| | | |
| | |
| | | """ |
| | | A class for storing required information about a card in relation to the ImageGenerator |
| | | """ |
| | | def __init__(self, img, card_info, objects, generator=None, x=None, y=None, theta=None): |
| | | def __init__(self, img, card_info, objects, x=None, y=None, theta=None, scale=None): |
| | | """ |
| | | :param img: image of the card |
| | | :param card_info: details like name, mana cost, type, set, etc |
| | |
| | | :param x: X-coordinate of the card's centre in relation to the generator |
| | | :param y: Y-coordinate of the card's centre in relation to the generator |
| | | :param theta: angle of rotation of the card in relation to the generator |
| | | :param scale: scale of the card in the generator in relation to the original image |
| | | """ |
| | | self._img = img |
| | | self._info = card_info |
| | | self._objects = objects |
| | | self._x = x |
| | | self._y = y |
| | | self._theta = theta |
| | | self.img = img |
| | | self.info = card_info |
| | | self.objects = objects |
| | | self.x = x |
| | | self.y = y |
| | | self.theta = theta |
| | | self.scale = scale |
| | | pass |
| | | |
| | | def bind_to_generator(self, generator, x=0, y=0, theta=0): |
| | | """ |
| | | Bind this card to an ImageGenerator object. |
| | | :param generator: generator to be bound with |
| | | :param x: new X-coordinate for the centre of the card |
| | | :param y: new Y-coordinate for the centre of the card |
| | | :param theta: new angle for the card |
| | | :return: none |
| | | """ |
| | | pass |
| | | |
| | | def shift(self, x=None, y=None): |
| | | def shift(self, x, y): |
| | | """ |
| | | Apply a X/Y translation on this image |
| | | :param x: amount of X-translation. If range is given, translate by a random amount within that range |
| | | :param y: amount of Y-translation. Refer to x when a range is given. |
| | | :return: none |
| | | """ |
| | | if isinstance(x, tuple) or (isinstance(x, list) and len(x) == 2): |
| | | self.x += random.uniform(x[0], x[1]) |
| | | else: |
| | | self.x += x |
| | | if isinstance(y, tuple) or (isinstance(y, list) and len(y) == 2): |
| | | self.y += random.uniform(y[0], y[1]) |
| | | else: |
| | | self.y += y |
| | | pass |
| | | |
| | | def rotate(self, centre, theta=None): |
| | | def rotate(self, theta, centre=(0, 0)): |
| | | """ |
| | | Apply a rotation on this image with a centre |
| | | :param centre: coordinate of the centre of the rotation in relation to the centre of this card (self._x, self._y) |
| | | :param theta: amount of rotation in radian. If a range is given, rotate by a random amount within that range |
| | | :param theta: amount of rotation in radian (clockwise). If a range is given, rotate by a random amount within |
| | | :param centre: coordinate of the centre of the rotation in relation to the centre of this card |
| | | that range |
| | | :return: none |
| | | """ |
| | | if isinstance(theta, tuple) or (isinstance(theta, list) and len(theta) == 2): |
| | | theta = random.uniform(theta[0], theta[1]) |
| | | |
| | | # If the centre given is the centre of this card, the whole math simplifies a bit |
| | | # (This still works without the if statement, but let's not do useless trigs if we know the answer already) |
| | | if centre is not (0, 0): |
| | | # Rotation math |
| | | self.x -= -centre[1] * math.sin(theta) + centre[0] * math.cos(theta) |
| | | self.y -= centre[1] * math.cos(theta) + centre[0] * math.sin(theta) |
| | | |
| | | # Offset for the coordinate translation |
| | | self.x += centre[0] |
| | | self.y += centre[1] |
| | | |
| | | self.theta += theta |
| | | pass |
| | | |
| | | def coordinate_in_generator(self, x, y): |
| | | """ |
| | | Converting coordinate within the card into the coordinate in the generator it is associated with |
| | | :param x: x coordinate within the card |
| | | :param y: y coordinate within the card |
| | | :return: (x, y) coordinate in the generator |
| | | """ |
| | | # Relative distance in X & Y axis, if the centre of the card is at the origin (0, 0) |
| | | rel_x = x - len(self.img[0]) // 2 |
| | | rel_y = y - len(self.img) // 2 |
| | | |
| | | # Scaling |
| | | rel_x *= self.scale |
| | | rel_y *= self.scale |
| | | |
| | | # Rotation |
| | | rot_x = rel_x - rel_y * math.sin(self.theta) + rel_x * math.cos(self.theta) |
| | | rot_y = rel_y + rel_y * math.cos(self.theta) + rel_x * math.sin(self.theta) |
| | | |
| | | # Negate offset |
| | | rot_x -= rel_x |
| | | rot_y -= rel_y |
| | | |
| | | # Shift |
| | | gen_x = rot_x + self.x |
| | | gen_y = rot_y + self.y |
| | | |
| | | return int(gen_x), int(gen_y) |
| | | |
| | | def bb_in_generator(self, key_pts): |
| | | """ |
| | | Convert a keypoints of bounding box in card into the coordinate in the generator |
| | | :param key_pts: keypoints of the bounding box |
| | | :return: bounding box represented by 4 points in the generator |
| | | """ |
| | | coords_in_gen = [self.coordinate_in_generator(key_pt[0], key_pt[1]) for key_pt in key_pts] |
| | | x1 = min([pt[0] for pt in coords_in_gen]) |
| | | x2 = max([pt[0] for pt in coords_in_gen]) |
| | | y1 = min([pt[1] for pt in coords_in_gen]) |
| | | y2 = max([pt[1] for pt in coords_in_gen]) |
| | | ''' |
| | | x1 = -math.inf |
| | | x2 = math.inf |
| | | y1 = -math.inf |
| | | y2 = math.inf |
| | | for key_pt in key_pts: |
| | | coord_in_gen = self.coordinate_in_generator(key_pt[0], key_pt[1]) |
| | | x1 = max(x1, coord_in_gen[0]) |
| | | x2 = min(x2, coord_in_gen[0]) |
| | | y1 = max(y1, coord_in_gen[1]) |
| | | y2 = min(y2, coord_in_gen[1]) |
| | | ''' |
| | | return [(x1, y1), (x2, y1), (x2, y2), (x1, y2)] |
| | | |
| | | |
| | | class ExtractedObject: |
| | | """ |
| | | Simple struct to hold information about an extracted object |
| | | """ |
| | | def __init__(self, label, key_pts): |
| | | self._label = label |
| | | self._key_pts = key_pts |
| | | self.label = label |
| | | self.key_pts = key_pts |
| | | self.visible = False |
| | | |
| | | |
| | | def main(): |
| | | random.seed() |
| | | img_bg = cv2.imread('data/frilly_0007.jpg') |
| | | generator = ImageGenerator(img_bg, [], 1440, 960) |
| | | card_pool = pd.DataFrame() |
| | | for set_name in fetch_data.all_set_list: |
| | | df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name) |
| | | card_info = df.iloc[random.randint(0, df.shape[0] - 1)] |
| | | # Currently ignoring planeswalker cards due to their different card layout |
| | | is_planeswalker = 'Planeswalker' in card_info['type_line'] |
| | | if not is_planeswalker: |
| | | card_pool = card_pool.append(card_info) |
| | | for i in [random.randrange(0, card_pool.shape[0] - 1, 1) for _ in range(4)]: |
| | | card_info = card_pool.iloc[i] |
| | | img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | print(img_name) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set']) |
| | | card_img = cv2.imread(img_name) |
| | | detected_object_list = generate_data.apply_bounding_box(card_img, card_info) |
| | | card = Card(card_img, card_info, detected_object_list) |
| | | |
| | | generator.add_card(card) |
| | | #generator.add_card(card, x=random.uniform(200, generator.width - 200), |
| | | # y=random.uniform(200, generator.height - 200), theta=random.uniform(-math.pi, math.pi), scale=0.5) |
| | | #card.shift([-100, 100], [-100, 100]) |
| | | #card.rotate((0, 0), [-math.pi / 4, math.pi / 4]) |
| | | import time |
| | | |
| | | for i in range(100): |
| | | generator.generate_vertical_span() |
| | | generator.display(debug=False) |
| | | generator.export_training_data(out_name='data/test') |
| | | #generator.generate_horizontal_span() |
| | | #generator.display(debug=True) |
| | | #generator.generate_vertical_span() |
| | | #generator.display(debug=True) |
| | | pass |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | main() |
| | | main() |