| | |
| | | } |
| | | } |
| | | |
| | | void binary_transpose_align_weights(convolutional_layer *l, size_t ldb_align) |
| | | void binary_align_weights(convolutional_layer *l, size_t lda_align) |
| | | { |
| | | int m = l->n; |
| | | int k = l->size*l->size*l->c; |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t new_lda = k + (lda_align - k%lda_align); // (k / 8 + 1) * 8; |
| | | |
| | | binarize_weights(l->weights, m, k, l->binary_weights); |
| | | |
| | | size_t align_weights_size = new_ldb * m; |
| | | size_t align_weights_size = new_lda * m; |
| | | size_t align_bit_weights_size = align_weights_size / 8;// +1; |
| | | float *align_weights = calloc(align_weights_size, sizeof(float)); |
| | | l->align_bit_weights = calloc(align_bit_weights_size, sizeof(char)); |
| | |
| | | // align A without transpose |
| | | for (i = 0; i < m; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | align_weights[i*new_ldb + j] = l->binary_weights[i*k + j]; |
| | | align_weights[i*new_lda + j] = l->binary_weights[i*k + j]; |
| | | } |
| | | } |
| | | float_to_bit(align_weights, l->align_bit_weights, align_weights_size); |
| | |
| | | } |
| | | |
| | | |
| | | size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align) |
| | | { |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | | float *t_input = calloc(t_intput_size, sizeof(float)); |
| | | //char * |
| | | *t_bit_input = calloc(t_bit_input_size, sizeof(char)); |
| | | |
| | | //printf("\n bit_input_size = %d, n = %d, k = %d, ldb = %d \n", bit_input_size, n, k, n); |
| | | //printf("\n t_bit_input_size = %d, k = %d, n = %d, new_ldb = %d \n", t_bit_input_size, k, n, new_ldb); |
| | | |
| | | //printf("\n align_weights_size = %d, k = %d, m = %d, lda = %d \n", align_weights_size, k, m, k); |
| | | //printf("\n align_bit_weights_size = %d, k = %d, m = %d, new_lda = %d \n", align_bit_weights_size, k, m, new_ldb); |
| | | |
| | | // transpose and align B |
| | | int i, j; |
| | | //#pragma omp parallel for |
| | | /* |
| | | for (i = 0; i < n; ++i) { |
| | | for (j = 0; j < k; ++j) { |
| | | t_input[i*new_ldb + j] = b[j*n + i]; |
| | | } |
| | | }*/ |
| | | //transpose_block_SSE4x4(float *A, float *B, const int n, const int m, const int lda, const int ldb, const int block_size) |
| | | |
| | | //transpose_block(b, t_input, k, n, n, new_ldb, 16); |
| | | |
| | | int blocksize = 1; |
| | | int mod_k = 1, mod_n = 1; |
| | | for (i = 2; i < 256; i *= 2) |
| | | if (k % i == 0) mod_k = i; |
| | | |
| | | for (i = 2; i < 256; i *= 2) |
| | | if (n % i == 0) mod_n = i; |
| | | |
| | | blocksize = (mod_k < mod_n) ? mod_k : mod_n; |
| | | |
| | | transpose_block_SSE4x4(b, t_input, k, n, n, new_ldb, blocksize); |
| | | |
| | | //transpose_block(b, t_input, k, n, n, new_ldb, blocksize); |
| | | //printf("\n blocksize = %d \n", blocksize); |
| | | |
| | | float_to_bit(t_input, *t_bit_input, t_intput_size); |
| | | free(t_input); |
| | | |
| | | return t_intput_size; |
| | | } |
| | | |
| | | |
| | | void forward_convolutional_layer(convolutional_layer l, network_state state) |
| | | { |
| | | int out_h = convolutional_out_height(l); |
| | |
| | | u++; |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_cpu(state.input, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | //im2col_cpu(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | im2col_cpu_custom(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b); |
| | | |
| | | //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); |
| | | if (l.xnor) { |
| | |
| | | |
| | | // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) |
| | | { |
| | | /* |
| | | size_t ldb_align = 256;// 8; |
| | | |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; |
| | | size_t t_intput_size = new_ldb * n; |
| | | size_t t_bit_input_size = t_intput_size / 8;// +1; |
| | |
| | | } |
| | | float_to_bit(t_input, t_bit_input, t_intput_size); |
| | | |
| | | |
| | | |
| | | if (!l.align_bit_weights) |
| | | { |
| | | size_t align_weights_size = new_ldb * m; |
| | |
| | | |
| | | free(align_weights); |
| | | } |
| | | */ |
| | | size_t ldb_align = 256; // 256 bit for AVX2 |
| | | size_t new_ldb = k + (ldb_align - k%ldb_align); |
| | | char *t_bit_input = NULL; |
| | | size_t t_intput_size = binary_transpose_align_input(k, n, b, &t_bit_input, ldb_align); |
| | | |
| | | gemm_nn_custom_bin_mean_transposed(m, n, k, 1, l.align_bit_weights, new_ldb, t_bit_input, new_ldb, c, n, l.mean_arr); |
| | | |
| | | //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); |
| | | |
| | | free(t_input); |
| | | //free(t_input); |
| | | free(t_bit_input); |
| | | |
| | | //free(align_bit_weights); |
| | |
| | | } |
| | | add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); |
| | | |
| | | activate_array(l.output, m*n*l.batch, l.activation); |
| | | //activate_array(l.output, m*n*l.batch, l.activation); |
| | | activate_array_cpu_custom(l.output, m*n*l.batch, l.activation); |
| | | |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | } |
| | | |