AlexeyAB
2016-12-09 d6da9e3e357dbbac8dec8886efc3865e61c647a6
src/detector.c
@@ -1,32 +1,49 @@
#include "network.h"
#include "detection_layer.h"
#include "region_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
#include "demo.h"
#include "option_list.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
static char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
static image voc_labels[20];
void train_detector(char *cfgfile, char *weightfile)
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
    char *train_images = "/data/voc/train.txt";
    char *backup_directory = "/home/pjreddie/backup/";
    list *options = read_data_cfg(datacfg);
    char *train_images = option_find_str(options, "train", "data/train.list");
    char *backup_directory = option_find_str(options, "backup", "/backup/");
    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    network *nets = calloc(ngpus, sizeof(network));
    srand(time(0));
    int seed = rand();
    int i;
    for(i = 0; i < ngpus; ++i){
        srand(seed);
#ifdef GPU
        cuda_set_device(gpus[i]);
#endif
        nets[i] = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights(&nets[i], weightfile);
        }
        if(clear) *nets[i].seen = 0;
        nets[i].learning_rate *= ngpus;
    }
    srand(time(0));
    network net = nets[0];
    int imgs = net.batch * net.subdivisions * ngpus;
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = net.batch*net.subdivisions;
    int i = *net.seen/imgs;
    data train, buffer;
    layer l = net.layers[net.n - 1];
@@ -49,93 +66,124 @@
    args.num_boxes = l.max_boxes;
    args.d = &buffer;
    args.type = DETECTION_DATA;
    args.threads = 8;
    args.angle = net.angle;
    args.exposure = net.exposure;
    args.saturation = net.saturation;
    args.hue = net.hue;
    pthread_t load_thread = load_data_in_thread(args);
    pthread_t load_thread = load_data(args);
    clock_t time;
    int count = 0;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net.max_batches){
        i += 1;
        if(l.random && count++%10 == 0){
            printf("Resizing\n");
            int dim = (rand() % 10 + 10) * 32;
            if (get_current_batch(net)+100 > net.max_batches) dim = 544;
            //int dim = (rand() % 4 + 16) * 32;
            printf("%d\n", dim);
            args.w = dim;
            args.h = dim;
            pthread_join(load_thread, 0);
            train = buffer;
            free_data(train);
            load_thread = load_data(args);
            for(i = 0; i < ngpus; ++i){
                resize_network(nets + i, dim, dim);
            }
            net = nets[0];
        }
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);
        load_thread = load_data(args);
/*
        int k;
        for(k = 0; k < l.max_boxes; ++k){
            box b = float_to_box(train.y.vals[10] + 1 + k*5);
            if(!b.x) break;
            printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
        }
        image im = float_to_image(448, 448, 3, train.X.vals[10]);
        int k;
        for(k = 0; k < l.max_boxes; ++k){
            box b = float_to_box(train.y.vals[10] + 1 + k*5);
            printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
            draw_bbox(im, b, 8, 1,0,0);
        }
        save_image(im, "truth11");
*/
        /*
           int k;
           for(k = 0; k < l.max_boxes; ++k){
           box b = float_to_box(train.y.vals[10] + 1 + k*5);
           if(!b.x) break;
           printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
           }
           image im = float_to_image(448, 448, 3, train.X.vals[10]);
           int k;
           for(k = 0; k < l.max_boxes; ++k){
           box b = float_to_box(train.y.vals[10] + 1 + k*5);
           printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
           draw_bbox(im, b, 8, 1,0,0);
           }
           save_image(im, "truth11");
         */
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        float loss = 0;
#ifdef GPU
        if(ngpus == 1){
            loss = train_network(net, train);
        } else {
            loss = train_networks(nets, ngpus, train, 4);
        }
#else
        loss = train_network(net, train);
#endif
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        i = get_current_batch(net);
        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0 || (i < 1000 && i%100 == 0)){
#ifdef GPU
            if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
#ifdef GPU
    if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
static void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
static int get_coco_image_id(char *filename)
{
    int i,j,n;
    //int per_cell = 5*num+classes;
    for (i = 0; i < side*side; ++i){
        int row = i / side;
        int col = i % side;
        for(n = 0; n < num; ++n){
            int index = i*num + n;
            int p_index = index * (classes + 5) + 4;
            float scale = predictions[p_index];
            int box_index = index * (classes + 5);
            boxes[index].x = (predictions[box_index + 0] + col + .5) / side * w;
            boxes[index].y = (predictions[box_index + 1] + row + .5) / side * h;
            if(0){
                boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / side * w;
                boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / side * h;
            }
            boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (square?2:1)) * w;
            boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (square?2:1)) * h;
            if(1){
                boxes[index].x = ((col + .5)/side + predictions[box_index + 0] * .5) * w;
                boxes[index].y = ((row + .5)/side + predictions[box_index + 1] * .5) * h;
                boxes[index].w = (exp(predictions[box_index + 2]) * .5) * w;
                boxes[index].h = (exp(predictions[box_index + 3]) * .5) * h;
            }
            for(j = 0; j < classes; ++j){
                int class_index = index * (classes + 5) + 5;
                float prob = scale*predictions[class_index+j];
                probs[index][j] = (prob > thresh) ? prob : 0;
            }
            if(only_objectness){
                probs[index][0] = scale;
            }
    char *p = strrchr(filename, '_');
    return atoi(p+1);
}
static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
    int i, j;
    int image_id = get_coco_image_id(image_path);
    for(i = 0; i < num_boxes; ++i){
        float xmin = boxes[i].x - boxes[i].w/2.;
        float xmax = boxes[i].x + boxes[i].w/2.;
        float ymin = boxes[i].y - boxes[i].h/2.;
        float ymax = boxes[i].y + boxes[i].h/2.;
        if (xmin < 0) xmin = 0;
        if (ymin < 0) ymin = 0;
        if (xmax > w) xmax = w;
        if (ymax > h) ymax = h;
        float bx = xmin;
        float by = ymin;
        float bw = xmax - xmin;
        float bh = ymax - ymin;
        for(j = 0; j < classes; ++j){
            if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
        }
    }
}
@@ -161,8 +209,40 @@
    }
}
void validate_detector(char *cfgfile, char *weightfile)
void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h)
{
    int i, j;
    for(i = 0; i < total; ++i){
        float xmin = boxes[i].x - boxes[i].w/2.;
        float xmax = boxes[i].x + boxes[i].w/2.;
        float ymin = boxes[i].y - boxes[i].h/2.;
        float ymax = boxes[i].y + boxes[i].h/2.;
        if (xmin < 0) xmin = 0;
        if (ymin < 0) ymin = 0;
        if (xmax > w) xmax = w;
        if (ymax > h) ymax = h;
        for(j = 0; j < classes; ++j){
            int class = j;
            if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class],
                    xmin, ymin, xmax, ymax);
        }
    }
}
void validate_detector(char *datacfg, char *cfgfile, char *weightfile)
{
    int j;
    list *options = read_data_cfg(datacfg);
    char *valid_images = option_find_str(options, "valid", "data/train.list");
    char *name_list = option_find_str(options, "names", "data/names.list");
    char *prefix = option_find_str(options, "results", "results");
    char **names = get_labels(name_list);
    char *mapf = option_find_str(options, "map", 0);
    int *map = 0;
    if (mapf) map = read_map(mapf);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
@@ -171,35 +251,50 @@
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
    char *base = "results/comp4_det_test_";
    //list *plist = get_paths("data/voc.2007.test");
    list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt");
    //list *plist = get_paths("data/voc.2012.test");
    char *base = "comp4_det_test_";
    list *plist = get_paths(valid_images);
    char **paths = (char **)list_to_array(plist);
    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int side = l.w;
    int j;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    char buff[1024];
    char *type = option_find_str(options, "eval", "voc");
    FILE *fp = 0;
    FILE **fps = 0;
    int coco = 0;
    int imagenet = 0;
    if(0==strcmp(type, "coco")){
        snprintf(buff, 1024, "%s/coco_results.json", prefix);
        fp = fopen(buff, "w");
        fprintf(fp, "[\n");
        coco = 1;
    } else if(0==strcmp(type, "imagenet")){
        snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix);
        fp = fopen(buff, "w");
        imagenet = 1;
        classes = 200;
    } else {
        fps = calloc(classes, sizeof(FILE *));
        for(j = 0; j < classes; ++j){
            snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]);
            fps[j] = fopen(buff, "w");
        }
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
    int m = plist->size;
    int i=0;
    int t;
    float thresh = .001;
    float nms = .5;
    float thresh = .005;
    float nms = .45;
    int nthreads = 2;
    int nthreads = 4;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
@@ -235,19 +330,30 @@
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            float *predictions = network_predict(net, X);
            network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            convert_detections(predictions, classes, l.n, 0, side, w, h, thresh, probs, boxes, 0);
            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, nms);
            print_detector_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
            get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
            if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
            if (coco){
                print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
            } else if (imagenet){
                print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
            } else {
                print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
            }
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    for(j = 0; j < classes; ++j){
        fclose(fps[j]);
        if(fps) fclose(fps[j]);
    }
    if(coco){
        fseek(fp, -2, SEEK_CUR);
        fprintf(fp, "\n]\n");
        fclose(fp);
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
@@ -262,25 +368,16 @@
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
    char *base = "results/comp4_det_test_";
    list *plist = get_paths("data/voc.2007.test");
    char **paths = (char **)list_to_array(plist);
    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int square = l.sqrt;
    int side = l.side;
    int j, k;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
    int m = plist->size;
    int i=0;
@@ -299,18 +396,19 @@
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        float *predictions = network_predict(net, sized.data);
        convert_detections(predictions, classes, l.n, square, l.w, 1, 1, thresh, probs, boxes, 1);
        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
        network_predict(net, sized.data);
        get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0);
        if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);
        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");
        char labelpath[4096];
        find_replace(path, "images", "labels", labelpath);
        find_replace(labelpath, "JPEGImages", "labels", labelpath);
        find_replace(labelpath, ".jpg", ".txt", labelpath);
        find_replace(labelpath, ".JPEG", ".txt", labelpath);
        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < side*side*l.n; ++k){
        for(k = 0; k < l.w*l.h*l.n; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
            }
@@ -319,7 +417,7 @@
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < side*side*l.n; ++k){
            for(k = 0; k < l.w*l.h*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
@@ -338,15 +436,17 @@
    }
}
void test_detector(char *cfgfile, char *weightfile, char *filename, float thresh)
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh)
{
    list *options = read_data_cfg(datacfg);
    char *name_list = option_find_str(options, "names", "data/names.list");
    char **names = get_labels(name_list);
    image **alphabet = load_alphabet();
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    detection_layer l = net.layers[net.n-1];
    l.side = l.w;
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
@@ -354,9 +454,6 @@
    char *input = buff;
    int j;
    float nms=.4;
    box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
    float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
    while(1){
        if(filename){
            strncpy(input, filename, 256);
@@ -369,19 +466,26 @@
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, net.w, net.h);
        layer l = net.layers[net.n-1];
        box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
        float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
        for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
        float *X = sized.data;
        time=clock();
        float *predictions = network_predict(net, X);
        network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        convert_detections(predictions, l.classes, l.n, 0, l.w, 1, 1, thresh, probs, boxes, 0);
        if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, 20);
        get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0);
        if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
        draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
        save_image(im, "predictions");
        show_image(im, "predictions");
        free_image(im);
        free_image(sized);
        free(boxes);
        free_ptrs((void **)probs, l.w*l.h*l.n);
#ifdef OPENCV
        cvWaitKey(0);
        cvDestroyAllWindows();
@@ -392,24 +496,52 @@
void run_detector(int argc, char **argv)
{
    int i;
    for(i = 0; i < 20; ++i){
        char buff[256];
        sprintf(buff, "data/labels/%s.png", voc_names[i]);
        voc_labels[i] = load_image_color(buff, 0, 0);
    }
    float thresh = find_float_arg(argc, argv, "-thresh", .2);
    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
    float thresh = find_float_arg(argc, argv, "-thresh", .24);
    int cam_index = find_int_arg(argc, argv, "-c", 0);
    int frame_skip = find_int_arg(argc, argv, "-s", 0);
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
    }
    char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
    int *gpus = 0;
    int gpu = 0;
    int ngpus = 0;
    if(gpu_list){
        printf("%s\n", gpu_list);
        int len = strlen(gpu_list);
        ngpus = 1;
        int i;
        for(i = 0; i < len; ++i){
            if (gpu_list[i] == ',') ++ngpus;
        }
        gpus = calloc(ngpus, sizeof(int));
        for(i = 0; i < ngpus; ++i){
            gpus[i] = atoi(gpu_list);
            gpu_list = strchr(gpu_list, ',')+1;
        }
    } else {
        gpu = gpu_index;
        gpus = &gpu;
        ngpus = 1;
    }
    char *cfg = argv[3];
    char *weights = (argc > 4) ? argv[4] : 0;
    char *filename = (argc > 5) ? argv[5]: 0;
    if(0==strcmp(argv[2], "test")) test_detector(cfg, weights, filename, thresh);
    else if(0==strcmp(argv[2], "train")) train_detector(cfg, weights);
    else if(0==strcmp(argv[2], "valid")) validate_detector(cfg, weights);
    int clear = find_arg(argc, argv, "-clear");
    char *datacfg = argv[3];
    char *cfg = argv[4];
    char *weights = (argc > 5) ? argv[5] : 0;
    char *filename = (argc > 6) ? argv[6]: 0;
    if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh);
    else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
    else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
    else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights);
    else if(0==strcmp(argv[2], "demo")) {
        list *options = read_data_cfg(datacfg);
        int classes = option_find_int(options, "classes", 20);
        char *name_list = option_find_str(options, "names", "data/names.list");
        char **names = get_labels(name_list);
        demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix);
    }
}