Joseph Redmon
2014-12-16 d6fbe86e7a8c1bc389902c90c57ee7e80f5475b9
src/convolutional_layer.c
@@ -59,17 +59,15 @@
    layer->filters = calloc(c*n*size*size, sizeof(float));
    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
    layer->biases = calloc(n, sizeof(float));
    layer->bias_updates = calloc(n, sizeof(float));
    layer->bias_momentum = calloc(n, sizeof(float));
    float scale = 1./(size*size*c);
    scale = .01;
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
    float scale = 1./sqrt(size*size*c);
    //scale = .05;
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
    for(i = 0; i < n; ++i){
        //layer->biases[i] = rand_normal()*scale + scale;
        layer->biases[i] = .5;
        layer->biases[i] = scale;
    }
    int out_h = convolutional_out_height(*layer);
    int out_w = convolutional_out_width(*layer);
@@ -77,14 +75,13 @@
    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    #ifdef GPU
    layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
    layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
    layer->filter_momentum_cl = cl_make_array(layer->filter_momentum, c*n*size*size);
    layer->biases_cl = cl_make_array(layer->biases, n);
    layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
    layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
    layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
    layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
@@ -207,7 +204,7 @@
    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
    scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
    axpy_cpu(size, -layer.decay, layer.filters, 1, layer.filter_updates, 1);
    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
    scal_cpu(size, layer.momentum, layer.filter_updates, 1);
}
@@ -283,7 +280,6 @@
{
    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
    cl_setup();
    cl_kernel kernel = get_convolutional_learn_bias_kernel();
    cl_command_queue queue = cl.queue;
@@ -318,7 +314,6 @@
    int out_w = convolutional_out_width(layer);
    int size = out_h*out_w;
    cl_setup();
    cl_kernel kernel = get_convolutional_bias_kernel();
    cl_command_queue queue = cl.queue;
@@ -394,12 +389,16 @@
{
    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
    cl_read_array(layer.biases_cl, layer.biases, layer.n);
    cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
}
void push_convolutional_layer(convolutional_layer layer)
{
    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
    cl_write_array(layer.biases_cl, layer.biases, layer.n);
    cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
}
void update_convolutional_layer_gpu(convolutional_layer layer)
@@ -408,7 +407,7 @@
    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
    scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
    axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1);
    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
    pull_convolutional_layer(layer);