| | |
| | | #include "crop_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "activation_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "gru_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | |
| | | |
| | | int is_network(section *s); |
| | | int is_convolutional(section *s); |
| | | int is_activation(section *s); |
| | | int is_local(section *s); |
| | | int is_deconvolutional(section *s); |
| | | int is_connected(section *s); |
| | | int is_rnn(section *s); |
| | | int is_gru(section *s); |
| | | int is_crnn(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_avgpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_softmax(section *s); |
| | | int is_normalization(section *s); |
| | | int is_batchnorm(section *s); |
| | | int is_crop(section *s); |
| | | int is_shortcut(section *s); |
| | | int is_cost(section *s); |
| | |
| | | int w; |
| | | int c; |
| | | int index; |
| | | int time_steps; |
| | | } size_params; |
| | | |
| | | deconvolutional_layer parse_deconvolutional(list *options, size_params params) |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before convolutional layer must output image."); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | int binary = option_find_int_quiet(options, "binary", 0); |
| | | int xnor = option_find_int_quiet(options, "xnor", 0); |
| | | |
| | | convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize); |
| | | convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary, xnor); |
| | | layer.flipped = option_find_int_quiet(options, "flipped", 0); |
| | | layer.dot = option_find_float_quiet(options, "dot", 0); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | |
| | | return layer; |
| | | } |
| | | |
| | | layer parse_crnn(list *options, size_params params) |
| | | { |
| | | int output_filters = option_find_int(options, "output_filters",1); |
| | | int hidden_filters = option_find_int(options, "hidden_filters",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize); |
| | | |
| | | l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_rnn(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | int hidden = option_find_int(options, "hidden",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | int logistic = option_find_int_quiet(options, "logistic", 0); |
| | | |
| | | layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic); |
| | | |
| | | l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_gru(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | connected_layer parse_connected(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation); |
| | | connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | |
| | | |
| | | softmax_layer parse_softmax(list *options, size_params params) |
| | | { |
| | | int groups = option_find_int(options, "groups",1); |
| | | int groups = option_find_int_quiet(options, "groups",1); |
| | | softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); |
| | | layer.temperature = option_find_float_quiet(options, "temperature", 1); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | layer.softmax = option_find_int(options, "softmax", 0); |
| | | layer.sqrt = option_find_int(options, "sqrt", 0); |
| | | |
| | | layer.max_boxes = option_find_int_quiet(options, "max",30); |
| | | layer.coord_scale = option_find_float(options, "coord_scale", 1); |
| | | layer.forced = option_find_int(options, "forced", 0); |
| | | layer.object_scale = option_find_float(options, "object_scale", 1); |
| | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_batchnorm(list *options, size_params params) |
| | | { |
| | | layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c); |
| | | return l; |
| | | } |
| | | |
| | | layer parse_shortcut(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "from"); |
| | |
| | | layer from = net.layers[index]; |
| | | |
| | | layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); |
| | | |
| | | char *activation_s = option_find_str(options, "activation", "linear"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | s.activation = activation; |
| | | return s; |
| | | } |
| | | |
| | | |
| | | layer parse_activation(list *options, size_params params) |
| | | { |
| | | char *activation_s = option_find_str(options, "activation", "linear"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | layer l = make_activation_layer(params.batch, params.inputs, activation); |
| | | |
| | | l.out_h = params.h; |
| | | l.out_w = params.w; |
| | | l.out_c = params.c; |
| | | l.h = params.h; |
| | | l.w = params.w; |
| | | l.c = params.c; |
| | | |
| | | return l; |
| | | } |
| | | |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "layers"); |
| | |
| | | |
| | | learning_rate_policy get_policy(char *s) |
| | | { |
| | | if (strcmp(s, "random")==0) return RANDOM; |
| | | if (strcmp(s, "poly")==0) return POLY; |
| | | if (strcmp(s, "constant")==0) return CONSTANT; |
| | | if (strcmp(s, "step")==0) return STEP; |
| | |
| | | net->momentum = option_find_float(options, "momentum", .9); |
| | | net->decay = option_find_float(options, "decay", .0001); |
| | | int subdivs = option_find_int(options, "subdivisions",1); |
| | | net->time_steps = option_find_int_quiet(options, "time_steps",1); |
| | | net->batch /= subdivs; |
| | | net->batch *= net->time_steps; |
| | | net->subdivisions = subdivs; |
| | | |
| | | net->h = option_find_int_quiet(options, "height",0); |
| | | net->w = option_find_int_quiet(options, "width",0); |
| | | net->c = option_find_int_quiet(options, "channels",0); |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); |
| | | net->min_crop = option_find_int_quiet(options, "min_crop",net->w); |
| | | |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | |
| | |
| | | } else if (net->policy == SIG){ |
| | | net->gamma = option_find_float(options, "gamma", 1); |
| | | net->step = option_find_int(options, "step", 1); |
| | | } else if (net->policy == POLY){ |
| | | } else if (net->policy == POLY || net->policy == RANDOM){ |
| | | net->power = option_find_float(options, "power", 1); |
| | | } |
| | | net->max_batches = option_find_int(options, "max_batches", 0); |
| | |
| | | params.c = net.c; |
| | | params.inputs = net.inputs; |
| | | params.batch = net.batch; |
| | | params.time_steps = net.time_steps; |
| | | |
| | | size_t workspace_size = 0; |
| | | n = n->next; |
| | | int count = 0; |
| | | free_section(s); |
| | |
| | | l = parse_convolutional(options, params); |
| | | }else if(is_local(s)){ |
| | | l = parse_local(options, params); |
| | | }else if(is_activation(s)){ |
| | | l = parse_activation(options, params); |
| | | }else if(is_deconvolutional(s)){ |
| | | l = parse_deconvolutional(options, params); |
| | | }else if(is_rnn(s)){ |
| | | l = parse_rnn(options, params); |
| | | }else if(is_gru(s)){ |
| | | l = parse_gru(options, params); |
| | | }else if(is_crnn(s)){ |
| | | l = parse_crnn(options, params); |
| | | }else if(is_connected(s)){ |
| | | l = parse_connected(options, params); |
| | | }else if(is_crop(s)){ |
| | |
| | | l = parse_softmax(options, params); |
| | | }else if(is_normalization(s)){ |
| | | l = parse_normalization(options, params); |
| | | }else if(is_batchnorm(s)){ |
| | | l = parse_batchnorm(options, params); |
| | | }else if(is_maxpool(s)){ |
| | | l = parse_maxpool(options, params); |
| | | }else if(is_avgpool(s)){ |
| | |
| | | l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); |
| | | option_unused(options); |
| | | net.layers[count] = l; |
| | | if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
| | | free_section(s); |
| | | n = n->next; |
| | | ++count; |
| | |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | | net.output = get_network_output(net); |
| | | if(workspace_size){ |
| | | //printf("%ld\n", workspace_size); |
| | | #ifdef GPU |
| | | net.workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); |
| | | #else |
| | | net.workspace = calloc(1, workspace_size); |
| | | #endif |
| | | } |
| | | return net; |
| | | } |
| | | |
| | | LAYER_TYPE string_to_layer_type(char * type) |
| | | { |
| | | |
| | | if (strcmp(type, "[shortcut]")==0) return SHORTCUT; |
| | | if (strcmp(type, "[crop]")==0) return CROP; |
| | | if (strcmp(type, "[cost]")==0) return COST; |
| | | if (strcmp(type, "[detection]")==0) return DETECTION; |
| | | if (strcmp(type, "[local]")==0) return LOCAL; |
| | | if (strcmp(type, "[deconv]")==0 |
| | | || strcmp(type, "[deconvolutional]")==0) return DECONVOLUTIONAL; |
| | | if (strcmp(type, "[conv]")==0 |
| | | || strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; |
| | | if (strcmp(type, "[activation]")==0) return ACTIVE; |
| | | if (strcmp(type, "[net]")==0 |
| | | || strcmp(type, "[network]")==0) return NETWORK; |
| | | if (strcmp(type, "[crnn]")==0) return CRNN; |
| | | if (strcmp(type, "[gru]")==0) return GRU; |
| | | if (strcmp(type, "[rnn]")==0) return RNN; |
| | | if (strcmp(type, "[conn]")==0 |
| | | || strcmp(type, "[connected]")==0) return CONNECTED; |
| | | if (strcmp(type, "[max]")==0 |
| | | || strcmp(type, "[maxpool]")==0) return MAXPOOL; |
| | | if (strcmp(type, "[avg]")==0 |
| | | || strcmp(type, "[avgpool]")==0) return AVGPOOL; |
| | | if (strcmp(type, "[dropout]")==0) return DROPOUT; |
| | | if (strcmp(type, "[lrn]")==0 |
| | | || strcmp(type, "[normalization]")==0) return NORMALIZATION; |
| | | if (strcmp(type, "[batchnorm]")==0) return BATCHNORM; |
| | | if (strcmp(type, "[soft]")==0 |
| | | || strcmp(type, "[softmax]")==0) return SOFTMAX; |
| | | if (strcmp(type, "[route]")==0) return ROUTE; |
| | | return BLANK; |
| | | } |
| | | |
| | | int is_shortcut(section *s) |
| | | { |
| | | return (strcmp(s->type, "[shortcut]")==0); |
| | |
| | | return (strcmp(s->type, "[conv]")==0 |
| | | || strcmp(s->type, "[convolutional]")==0); |
| | | } |
| | | int is_activation(section *s) |
| | | { |
| | | return (strcmp(s->type, "[activation]")==0); |
| | | } |
| | | int is_network(section *s) |
| | | { |
| | | return (strcmp(s->type, "[net]")==0 |
| | | || strcmp(s->type, "[network]")==0); |
| | | } |
| | | int is_crnn(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crnn]")==0); |
| | | } |
| | | int is_gru(section *s) |
| | | { |
| | | return (strcmp(s->type, "[gru]")==0); |
| | | } |
| | | int is_rnn(section *s) |
| | | { |
| | | return (strcmp(s->type, "[rnn]")==0); |
| | | } |
| | | int is_connected(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conn]")==0 |
| | |
| | | || strcmp(s->type, "[normalization]")==0); |
| | | } |
| | | |
| | | int is_batchnorm(section *s) |
| | | { |
| | | return (strcmp(s->type, "[batchnorm]")==0); |
| | | } |
| | | |
| | | int is_softmax(section *s) |
| | | { |
| | | return (strcmp(s->type, "[soft]")==0 |
| | |
| | | fclose(fp); |
| | | } |
| | | |
| | | void save_convolutional_weights_binary(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters); |
| | | int size = l.c*l.size*l.size; |
| | | int i, j, k; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | for(i = 0; i < l.n; ++i){ |
| | | float mean = l.binary_filters[i*size]; |
| | | if(mean < 0) mean = -mean; |
| | | fwrite(&mean, sizeof(float), 1, fp); |
| | | for(j = 0; j < size/8; ++j){ |
| | | int index = i*size + j*8; |
| | | unsigned char c = 0; |
| | | for(k = 0; k < 8; ++k){ |
| | | if (j*8 + k >= size) break; |
| | | if (l.binary_filters[index + k] > 0) c = (c | 1<<k); |
| | | } |
| | | fwrite(&c, sizeof(char), 1, fp); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void save_convolutional_weights(layer l, FILE *fp) |
| | | { |
| | | if(l.binary){ |
| | | //save_convolutional_weights_binary(l, fp); |
| | | //return; |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | |
| | | void save_batchnorm_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_batchnorm_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(l.scales, sizeof(float), l.c, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.c, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.c, fp); |
| | | } |
| | | |
| | | void save_connected_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(l.biases, sizeof(float), l.outputs, fp); |
| | | fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.outputs, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.outputs, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.outputs, fp); |
| | | } |
| | | } |
| | | |
| | | void save_weights_upto(network net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Saving weights to %s\n", filename); |
| | |
| | | for(i = 0; i < net.n && i < cutoff; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | save_convolutional_weights(l, fp); |
| | | } if(l.type == CONNECTED){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(l.biases, sizeof(float), l.outputs, fp); |
| | | fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | save_connected_weights(l, fp); |
| | | } if(l.type == BATCHNORM){ |
| | | save_batchnorm_weights(l, fp); |
| | | } if(l.type == RNN){ |
| | | save_connected_weights(*(l.input_layer), fp); |
| | | save_connected_weights(*(l.self_layer), fp); |
| | | save_connected_weights(*(l.output_layer), fp); |
| | | } if(l.type == GRU){ |
| | | save_connected_weights(*(l.input_z_layer), fp); |
| | | save_connected_weights(*(l.input_r_layer), fp); |
| | | save_connected_weights(*(l.input_h_layer), fp); |
| | | save_connected_weights(*(l.state_z_layer), fp); |
| | | save_connected_weights(*(l.state_r_layer), fp); |
| | | save_connected_weights(*(l.state_h_layer), fp); |
| | | } if(l.type == CRNN){ |
| | | save_convolutional_weights(*(l.input_layer), fp); |
| | | save_convolutional_weights(*(l.self_layer), fp); |
| | | save_convolutional_weights(*(l.output_layer), fp); |
| | | } if(l.type == LOCAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | |
| | | free(transpose); |
| | | } |
| | | |
| | | void load_connected_weights(layer l, FILE *fp, int transpose) |
| | | { |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | if(transpose){ |
| | | transpose_matrix(l.weights, l.inputs, l.outputs); |
| | | } |
| | | //printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); |
| | | //printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.outputs, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.outputs, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.outputs, fp); |
| | | //printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs)); |
| | | //printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs)); |
| | | //printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs)); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void load_batchnorm_weights(layer l, FILE *fp) |
| | | { |
| | | fread(l.scales, sizeof(float), l.c, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.c, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.c, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_batchnorm_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void load_convolutional_weights_binary(layer l, FILE *fp) |
| | | { |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | int size = l.c*l.size*l.size; |
| | | int i, j, k; |
| | | for(i = 0; i < l.n; ++i){ |
| | | float mean = 0; |
| | | fread(&mean, sizeof(float), 1, fp); |
| | | for(j = 0; j < size/8; ++j){ |
| | | int index = i*size + j*8; |
| | | unsigned char c = 0; |
| | | fread(&c, sizeof(char), 1, fp); |
| | | for(k = 0; k < 8; ++k){ |
| | | if (j*8 + k >= size) break; |
| | | l.filters[index + k] = (c & 1<<k) ? mean : -mean; |
| | | } |
| | | } |
| | | } |
| | | binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void load_convolutional_weights(layer l, FILE *fp) |
| | | { |
| | | if(l.binary){ |
| | | //load_convolutional_weights_binary(l, fp); |
| | | //return; |
| | | } |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | if (l.flipped) { |
| | | transpose_matrix(l.filters, l.c*l.size*l.size, l.n); |
| | | } |
| | | if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s...", filename); |
| | | fflush(stdout); |
| | | FILE *fp = fopen(filename, "r"); |
| | | FILE *fp = fopen(filename, "rb"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | int major; |
| | |
| | | fread(&minor, sizeof(int), 1, fp); |
| | | fread(&revision, sizeof(int), 1, fp); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | int transpose = (major > 1000) || (minor > 1000); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n && i < cutoff; ++i){ |
| | | layer l = net->layers[i]; |
| | | if (l.dontload) continue; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | if (l.flipped) { |
| | | transpose_matrix(l.filters, l.c*l.size*l.size, l.n); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | load_convolutional_weights(l, fp); |
| | | } |
| | | if(l.type == DECONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | |
| | | #endif |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | if(major > 1000 || minor > 1000){ |
| | | transpose_matrix(l.weights, l.inputs, l.outputs); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(l); |
| | | } |
| | | #endif |
| | | load_connected_weights(l, fp, transpose); |
| | | } |
| | | if(l.type == BATCHNORM){ |
| | | load_batchnorm_weights(l, fp); |
| | | } |
| | | if(l.type == CRNN){ |
| | | load_convolutional_weights(*(l.input_layer), fp); |
| | | load_convolutional_weights(*(l.self_layer), fp); |
| | | load_convolutional_weights(*(l.output_layer), fp); |
| | | } |
| | | if(l.type == RNN){ |
| | | load_connected_weights(*(l.input_layer), fp, transpose); |
| | | load_connected_weights(*(l.self_layer), fp, transpose); |
| | | load_connected_weights(*(l.output_layer), fp, transpose); |
| | | } |
| | | if(l.type == GRU){ |
| | | load_connected_weights(*(l.input_z_layer), fp, transpose); |
| | | load_connected_weights(*(l.input_r_layer), fp, transpose); |
| | | load_connected_weights(*(l.input_h_layer), fp, transpose); |
| | | load_connected_weights(*(l.state_z_layer), fp, transpose); |
| | | load_connected_weights(*(l.state_r_layer), fp, transpose); |
| | | load_connected_weights(*(l.state_h_layer), fp, transpose); |
| | | } |
| | | if(l.type == LOCAL){ |
| | | int locations = l.out_w*l.out_h; |