Joseph Redmon
2016-06-23 d7fd2acf0582020de87f49d8863d39d1744a858c
src/convolutional_kernels.cu
@@ -71,12 +71,6 @@
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
    int i;
    int m = l.n;
    int k = l.size*l.size*l.c;
    int n = convolutional_out_height(l)*
        convolutional_out_width(l);
    fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
    if(l.binary){
        binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
@@ -85,69 +79,128 @@
    if(l.xnor){
        binarize_filters_gpu(l.filters_gpu, l.n, l.c*l.size*l.size, l.binary_filters_gpu);
        //binarize_gpu(l.filters_gpu, l.n*l.c*l.size*l.size, l.binary_filters_gpu);
        swap_binary(&l);
        for(i = 0; i < l.batch; ++i){
            binarize_input_gpu(state.input + i*l.inputs, l.c, l.h*l.w, l.binary_input_gpu + i*l.inputs);
        }
        binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
        state.input = l.binary_input_gpu;
    }
#ifdef CUDNN
    float one = 1;
    cudnnConvolutionForward(cudnn_handle(),
                &one,
                l.srcTensorDesc,
                state.input,
                l.filterDesc,
                l.filters_gpu,
                l.convDesc,
                l.fw_algo,
                state.workspace,
                l.workspace_size,
                &one,
                l.dstTensorDesc,
                l.output_gpu);
#else
    int i;
    int m = l.n;
    int k = l.size*l.size*l.c;
    int n = l.out_w*l.out_h;
    for(i = 0; i < l.batch; ++i){
        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, l.col_image_gpu);
        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
        float * a = l.filters_gpu;
        float * b = l.col_image_gpu;
        float * b = state.workspace;
        float * c = l.output_gpu;
        gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n);
    }
#endif
    if (l.batch_normalize) {
        forward_batchnorm_layer_gpu(l, state);
    }
    add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n);
    add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
    activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation);
    activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
    //if(l.dot > 0) dot_error_gpu(l);
    if(l.binary || l.xnor) swap_binary(&l);
}
void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
    int i;
    int m = l.n;
    int n = l.size*l.size*l.c;
    int k = convolutional_out_height(l)*
        convolutional_out_width(l);
    gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
    gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu);
    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k);
    backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
    if(l.batch_normalize){
        backward_batchnorm_layer_gpu(l, state);
    }
    float *original_input = state.input;
    if(l.xnor) state.input = l.binary_input_gpu;
#ifdef CUDNN
    float one = 1;
    cudnnConvolutionBackwardFilter(cudnn_handle(),
            &one,
            l.srcTensorDesc,
            state.input,
            l.ddstTensorDesc,
            l.delta_gpu,
            l.convDesc,
            l.bf_algo,
            state.workspace,
            l.workspace_size,
            &one,
            l.dfilterDesc,
            l.filter_updates_gpu);
    if(state.delta){
        if(l.binary || l.xnor) swap_binary(&l);
        cudnnConvolutionBackwardData(cudnn_handle(),
                &one,
                l.filterDesc,
                l.filters_gpu,
                l.ddstTensorDesc,
                l.delta_gpu,
                l.convDesc,
                l.bd_algo,
                state.workspace,
                l.workspace_size,
                &one,
                l.dsrcTensorDesc,
                state.delta);
        if(l.binary || l.xnor) swap_binary(&l);
        if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
    }
#else
    int m = l.n;
    int n = l.size*l.size*l.c;
    int k = l.out_w*l.out_h;
    int i;
    for(i = 0; i < l.batch; ++i){
        float * a = l.delta_gpu;
        float * b = l.col_image_gpu;
        float * b = state.workspace;
        float * c = l.filter_updates_gpu;
        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, l.col_image_gpu);
        im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.workspace);
        gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n);
        if(state.delta){
            if(l.binary || l.xnor) swap_binary(&l);
            float * a = l.filters_gpu;
            float * b = l.delta_gpu;
            float * c = l.col_image_gpu;
            float * c = state.workspace;
            gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k);
            col2im_ongpu(l.col_image_gpu, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
            if(l.binary || l.xnor) swap_binary(&l);
            col2im_ongpu(state.workspace, l.c,  l.h,  l.w,  l.size,  l.stride, l.pad, state.delta + i*l.c*l.h*l.w);
            if(l.binary || l.xnor) {
                swap_binary(&l);
            }
            if(l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w);
        }
    }
#endif
}
void pull_convolutional_layer(convolutional_layer layer)