| | |
| | | #include "image.h" |
| | | #include "utils.h" |
| | | #include "blas.h" |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | |
| | | #define STB_IMAGE_IMPLEMENTATION |
| | | #include "stb_image.h" |
| | | #define STB_IMAGE_WRITE_IMPLEMENTATION |
| | | #include "stb_image_write.h" |
| | | |
| | | int windows = 0; |
| | | |
| | | float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} }; |
| | | |
| | | float get_color(int c, int x, int max) |
| | | { |
| | | float ratio = ((float)x/max)*5; |
| | | int i = floor(ratio); |
| | | int j = ceil(ratio); |
| | | ratio -= i; |
| | | float r = (1-ratio) * colors[i][c] + ratio*colors[j][c]; |
| | | //printf("%f\n", r); |
| | | return r; |
| | | } |
| | | |
| | | void draw_label(image a, int r, int c, image label, const float *rgb) |
| | | { |
| | | float ratio = (float) label.w / label.h; |
| | | int h = label.h; |
| | | int w = ratio * h; |
| | | image rl = resize_image(label, w, h); |
| | | if (r - h >= 0) r = r - h; |
| | | |
| | | int i, j, k; |
| | | for(j = 0; j < h && j + r < a.h; ++j){ |
| | | for(i = 0; i < w && i + c < a.w; ++i){ |
| | | for(k = 0; k < label.c; ++k){ |
| | | float val = get_pixel(rl, i, j, k); |
| | | set_pixel(a, i+c, j+r, k, rgb[k] * val); |
| | | } |
| | | } |
| | | } |
| | | free_image(rl); |
| | | } |
| | | |
| | | void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b) |
| | | { |
| | | //normalize_image(a); |
| | | int i; |
| | | if(x1 < 0) x1 = 0; |
| | | if(x1 >= a.w) x1 = a.w-1; |
| | | if(x2 < 0) x2 = 0; |
| | | if(x2 >= a.w) x2 = a.w-1; |
| | | |
| | | if(y1 < 0) y1 = 0; |
| | | if(y1 >= a.h) y1 = a.h-1; |
| | | if(y2 < 0) y2 = 0; |
| | | if(y2 >= a.h) y2 = a.h-1; |
| | | |
| | | for(i = x1; i <= x2; ++i){ |
| | | a.data[i + y1*a.w + 0*a.w*a.h] = r; |
| | | a.data[i + y2*a.w + 0*a.w*a.h] = r; |
| | | |
| | | a.data[i + y1*a.w + 1*a.w*a.h] = g; |
| | | a.data[i + y2*a.w + 1*a.w*a.h] = g; |
| | | |
| | | a.data[i + y1*a.w + 2*a.w*a.h] = b; |
| | | a.data[i + y2*a.w + 2*a.w*a.h] = b; |
| | | } |
| | | for(i = y1; i <= y2; ++i){ |
| | | a.data[x1 + i*a.w + 0*a.w*a.h] = r; |
| | | a.data[x2 + i*a.w + 0*a.w*a.h] = r; |
| | | |
| | | a.data[x1 + i*a.w + 1*a.w*a.h] = g; |
| | | a.data[x2 + i*a.w + 1*a.w*a.h] = g; |
| | | |
| | | a.data[x1 + i*a.w + 2*a.w*a.h] = b; |
| | | a.data[x2 + i*a.w + 2*a.w*a.h] = b; |
| | | } |
| | | } |
| | | |
| | | void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b) |
| | | { |
| | | int i; |
| | | for(i = 0; i < w; ++i){ |
| | | draw_box(a, x1+i, y1+i, x2-i, y2-i, r, g, b); |
| | | } |
| | | } |
| | | |
| | | void draw_bbox(image a, box bbox, int w, float r, float g, float b) |
| | | { |
| | | int left = (bbox.x-bbox.w/2)*a.w; |
| | | int right = (bbox.x+bbox.w/2)*a.w; |
| | | int top = (bbox.y-bbox.h/2)*a.h; |
| | | int bot = (bbox.y+bbox.h/2)*a.h; |
| | | |
| | | int i; |
| | | for(i = 0; i < w; ++i){ |
| | | draw_box(a, left+i, top+i, right-i, bot-i, r, g, b); |
| | | } |
| | | } |
| | | |
| | | void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image *labels, int classes) |
| | | { |
| | | int i; |
| | | |
| | | for(i = 0; i < num; ++i){ |
| | | int class = max_index(probs[i], classes); |
| | | float prob = probs[i][class]; |
| | | if(prob > thresh){ |
| | | int width = pow(prob, 1./2.)*10+1; |
| | | width = 8; |
| | | printf("%s: %.2f\n", names[class], prob); |
| | | int offset = class*17 % classes; |
| | | float red = get_color(0,offset,classes); |
| | | float green = get_color(1,offset,classes); |
| | | float blue = get_color(2,offset,classes); |
| | | float rgb[3]; |
| | | rgb[0] = red; |
| | | rgb[1] = green; |
| | | rgb[2] = blue; |
| | | box b = boxes[i]; |
| | | |
| | | int left = (b.x-b.w/2.)*im.w; |
| | | int right = (b.x+b.w/2.)*im.w; |
| | | int top = (b.y-b.h/2.)*im.h; |
| | | int bot = (b.y+b.h/2.)*im.h; |
| | | |
| | | if(left < 0) left = 0; |
| | | if(right > im.w-1) right = im.w-1; |
| | | if(top < 0) top = 0; |
| | | if(bot > im.h-1) bot = im.h-1; |
| | | |
| | | draw_box_width(im, left, top, right, bot, width, red, green, blue); |
| | | if (labels) draw_label(im, top + width, left, labels[class], rgb); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void transpose_image(image im) |
| | | { |
| | | assert(im.w == im.h); |
| | | int n, m; |
| | | int c; |
| | | for(c = 0; c < im.c; ++c){ |
| | | for(n = 0; n < im.w-1; ++n){ |
| | | for(m = n + 1; m < im.w; ++m){ |
| | | float swap = im.data[m + im.w*(n + im.h*c)]; |
| | | im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)]; |
| | | im.data[n + im.w*(m + im.h*c)] = swap; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void rotate_image_cw(image im, int times) |
| | | { |
| | | assert(im.w == im.h); |
| | | times = (times + 400) % 4; |
| | | int i, x, y, c; |
| | | int n = im.w; |
| | | for(i = 0; i < times; ++i){ |
| | | for(c = 0; c < im.c; ++c){ |
| | | for(x = 0; x < n/2; ++x){ |
| | | for(y = 0; y < (n-1)/2 + 1; ++y){ |
| | | float temp = im.data[y + im.w*(x + im.h*c)]; |
| | | im.data[y + im.w*(x + im.h*c)] = im.data[n-1-x + im.w*(y + im.h*c)]; |
| | | im.data[n-1-x + im.w*(y + im.h*c)] = im.data[n-1-y + im.w*(n-1-x + im.h*c)]; |
| | | im.data[n-1-y + im.w*(n-1-x + im.h*c)] = im.data[x + im.w*(n-1-y + im.h*c)]; |
| | | im.data[x + im.w*(n-1-y + im.h*c)] = temp; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void flip_image(image a) |
| | | { |
| | | int i,j,k; |
| | | for(k = 0; k < a.c; ++k){ |
| | | for(i = 0; i < a.h; ++i){ |
| | | for(j = 0; j < a.w/2; ++j){ |
| | | int index = j + a.w*(i + a.h*(k)); |
| | | int flip = (a.w - j - 1) + a.w*(i + a.h*(k)); |
| | | float swap = a.data[flip]; |
| | | a.data[flip] = a.data[index]; |
| | | a.data[index] = swap; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | image image_distance(image a, image b) |
| | | { |
| | | int i,j; |
| | | image dist = make_image(a.h, a.w, 1); |
| | | image dist = make_image(a.w, a.h, 1); |
| | | for(i = 0; i < a.c; ++i){ |
| | | for(j = 0; j < a.h*a.w; ++j){ |
| | | dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2); |
| | |
| | | return dist; |
| | | } |
| | | |
| | | void subtract_image(image a, image b) |
| | | void embed_image(image source, image dest, int dx, int dy) |
| | | { |
| | | int i; |
| | | for(i = 0; i < a.h*a.w*a.c; ++i) a.data[i] -= b.data[i]; |
| | | } |
| | | |
| | | void embed_image(image source, image dest, int h, int w) |
| | | { |
| | | int i,j,k; |
| | | int x,y,k; |
| | | for(k = 0; k < source.c; ++k){ |
| | | for(i = 0; i < source.h; ++i){ |
| | | for(j = 0; j < source.w; ++j){ |
| | | float val = get_pixel(source, i,j,k); |
| | | set_pixel(dest, h+i, w+j, k, val); |
| | | for(y = 0; y < source.h; ++y){ |
| | | for(x = 0; x < source.w; ++x){ |
| | | float val = get_pixel(source, x,y,k); |
| | | set_pixel(dest, dx+x, dy+y, k, val); |
| | | } |
| | | } |
| | | } |
| | |
| | | { |
| | | int h = source.h; |
| | | h = (h+border)*source.c - border; |
| | | image dest = make_image(h, source.w, 1); |
| | | image dest = make_image(source.w, h, 1); |
| | | int i; |
| | | for(i = 0; i < source.c; ++i){ |
| | | image layer = get_image_layer(source, i); |
| | | int h_offset = i*(source.h+border); |
| | | embed_image(layer, dest, h_offset, 0); |
| | | embed_image(layer, dest, 0, h_offset); |
| | | free_image(layer); |
| | | } |
| | | return dest; |
| | | } |
| | | |
| | | void z_normalize_image(image p) |
| | | void constrain_image(image im) |
| | | { |
| | | normalize_array(p.data, p.h*p.w*p.c); |
| | | int i; |
| | | for(i = 0; i < im.w*im.h*im.c; ++i){ |
| | | if(im.data[i] < 0) im.data[i] = 0; |
| | | if(im.data[i] > 1) im.data[i] = 1; |
| | | } |
| | | } |
| | | |
| | | void normalize_image(image p) |
| | |
| | | free(max); |
| | | } |
| | | |
| | | float avg_image_layer(image m, int l) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < m.h*m.w; ++i){ |
| | | sum += m.data[l*m.h*m.w + i]; |
| | | } |
| | | return sum/(m.h*m.w); |
| | | } |
| | | |
| | | void threshold_image(image p, float t) |
| | | { |
| | | int i; |
| | | for(i = 0; i < p.w*p.h*p.c; ++i){ |
| | | if(p.data[i] < t) p.data[i] = 0; |
| | | } |
| | | } |
| | | |
| | | image copy_image(image p) |
| | | { |
| | | image copy = p; |
| | |
| | | return copy; |
| | | } |
| | | |
| | | |
| | | void show_image(image p, char *name) |
| | | void rgbgr_image(image im) |
| | | { |
| | | int i,j,k; |
| | | int i; |
| | | for(i = 0; i < im.w*im.h; ++i){ |
| | | float swap = im.data[i]; |
| | | im.data[i] = im.data[i+im.w*im.h*2]; |
| | | im.data[i+im.w*im.h*2] = swap; |
| | | } |
| | | } |
| | | |
| | | #ifdef OPENCV |
| | | void show_image_cv(image p, const char *name) |
| | | { |
| | | int x,y,k; |
| | | image copy = copy_image(p); |
| | | normalize_image(copy); |
| | | constrain_image(copy); |
| | | if(p.c == 3) rgbgr_image(copy); |
| | | //normalize_image(copy); |
| | | |
| | | char buff[256]; |
| | | //sprintf(buff, "%s (%d)", name, windows); |
| | |
| | | |
| | | IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
| | | int step = disp->widthStep; |
| | | cvNamedWindow(buff, CV_WINDOW_AUTOSIZE); |
| | | cvNamedWindow(buff, CV_WINDOW_NORMAL); |
| | | //cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); |
| | | ++windows; |
| | | for(i = 0; i < p.h; ++i){ |
| | | for(j = 0; j < p.w; ++j){ |
| | | for(y = 0; y < p.h; ++y){ |
| | | for(x = 0; x < p.w; ++x){ |
| | | for(k= 0; k < p.c; ++k){ |
| | | disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255); |
| | | disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255); |
| | | } |
| | | } |
| | | } |
| | | free_image(copy); |
| | | if(disp->height < 500 || disp->width < 500 || disp->height > 1000){ |
| | | int w = 500; |
| | | if(0){ |
| | | //if(disp->height < 448 || disp->width < 448 || disp->height > 1000){ |
| | | int w = 448; |
| | | int h = w*p.h/p.w; |
| | | if(h > 1000){ |
| | | h = 1000; |
| | |
| | | } |
| | | IplImage *buffer = disp; |
| | | disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels); |
| | | cvResize(buffer, disp, CV_INTER_NN); |
| | | cvResize(buffer, disp, CV_INTER_LINEAR); |
| | | cvReleaseImage(&buffer); |
| | | } |
| | | cvShowImage(buff, disp); |
| | | cvReleaseImage(&disp); |
| | | } |
| | | #endif |
| | | |
| | | void show_image(image p, const char *name) |
| | | { |
| | | #ifdef OPENCV |
| | | show_image_cv(p, name); |
| | | #else |
| | | fprintf(stderr, "Not compiled with OpenCV, saving to %s.png instead\n", name); |
| | | save_image(p, name); |
| | | #endif |
| | | } |
| | | |
| | | void save_image(image im, const char *name) |
| | | { |
| | | char buff[256]; |
| | | //sprintf(buff, "%s (%d)", name, windows); |
| | | sprintf(buff, "%s.png", name); |
| | | unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char)); |
| | | int i,k; |
| | | for(k = 0; k < im.c; ++k){ |
| | | for(i = 0; i < im.w*im.h; ++i){ |
| | | data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]); |
| | | } |
| | | } |
| | | int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c); |
| | | free(data); |
| | | if(!success) fprintf(stderr, "Failed to write image %s\n", buff); |
| | | } |
| | | |
| | | #ifdef OPENCV |
| | | image get_image_from_stream(CvCapture *cap) |
| | | { |
| | | IplImage* src = cvQueryFrame(cap); |
| | | if (!src) return make_empty_image(0,0,0); |
| | | image im = ipl_to_image(src); |
| | | rgbgr_image(im); |
| | | return im; |
| | | } |
| | | #endif |
| | | |
| | | #ifdef OPENCV |
| | | void save_image_jpg(image p, char *name) |
| | | { |
| | | image copy = copy_image(p); |
| | | rgbgr_image(copy); |
| | | int x,y,k; |
| | | |
| | | char buff[256]; |
| | | sprintf(buff, "%s.jpg", name); |
| | | |
| | | IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
| | | int step = disp->widthStep; |
| | | for(y = 0; y < p.h; ++y){ |
| | | for(x = 0; x < p.w; ++x){ |
| | | for(k= 0; k < p.c; ++k){ |
| | | disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255); |
| | | } |
| | | } |
| | | } |
| | | cvSaveImage(buff, disp,0); |
| | | cvReleaseImage(&disp); |
| | | free_image(copy); |
| | | } |
| | | #endif |
| | | |
| | | void show_image_layers(image p, char *name) |
| | | { |
| | | int i; |
| | | char buff[256]; |
| | | for(i = 0; i < p.c; ++i){ |
| | | sprintf(buff, "%s - Layer %d", name, i); |
| | | image layer = get_image_layer(p, i); |
| | | show_image(layer, buff); |
| | | free_image(layer); |
| | | } |
| | | } |
| | | |
| | | void show_image_collapsed(image p, char *name) |
| | | { |
| | | image c = collapse_image_layers(p, 1); |
| | | show_image(c, name); |
| | | free_image(c); |
| | | } |
| | | |
| | | image make_empty_image(int w, int h, int c) |
| | | { |
| | | image out; |
| | | out.data = 0; |
| | | out.h = h; |
| | | out.w = w; |
| | | out.c = c; |
| | | return out; |
| | | } |
| | | |
| | | image make_image(int w, int h, int c) |
| | | { |
| | | image out = make_empty_image(w,h,c); |
| | | out.data = calloc(h*w*c, sizeof(float)); |
| | | return out; |
| | | } |
| | | |
| | | image make_random_image(int w, int h, int c) |
| | | { |
| | | image out = make_empty_image(w,h,c); |
| | | out.data = calloc(h*w*c, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < w*h*c; ++i){ |
| | | out.data[i] = (rand_normal() * .25) + .5; |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | image float_to_image(int w, int h, int c, float *data) |
| | | { |
| | | image out = make_empty_image(w,h,c); |
| | | out.data = data; |
| | | return out; |
| | | } |
| | | |
| | | image rotate_image(image im, float rad) |
| | | { |
| | | int x, y, c; |
| | | float cx = im.w/2.; |
| | | float cy = im.h/2.; |
| | | image rot = make_image(im.w, im.h, im.c); |
| | | for(c = 0; c < im.c; ++c){ |
| | | for(y = 0; y < im.h; ++y){ |
| | | for(x = 0; x < im.w; ++x){ |
| | | float rx = cos(rad)*(x-cx) - sin(rad)*(y-cy) + cx; |
| | | float ry = sin(rad)*(x-cx) + cos(rad)*(y-cy) + cy; |
| | | float val = bilinear_interpolate(im, rx, ry, c); |
| | | set_pixel(rot, x, y, c, val); |
| | | } |
| | | } |
| | | } |
| | | return rot; |
| | | } |
| | | |
| | | void translate_image(image m, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; |
| | | } |
| | | |
| | | void scale_image(image m, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; |
| | | } |
| | | |
| | | image crop_image(image im, int dx, int dy, int w, int h) |
| | | { |
| | | image cropped = make_image(w, h, im.c); |
| | | int i, j, k; |
| | | for(k = 0; k < im.c; ++k){ |
| | | for(j = 0; j < h; ++j){ |
| | | for(i = 0; i < w; ++i){ |
| | | int r = j + dy; |
| | | int c = i + dx; |
| | | float val = 0; |
| | | r = constrain_int(r, 0, im.h-1); |
| | | c = constrain_int(c, 0, im.w-1); |
| | | if (r >= 0 && r < im.h && c >= 0 && c < im.w) { |
| | | val = get_pixel(im, c, r, k); |
| | | } |
| | | set_pixel(cropped, i, j, k, val); |
| | | } |
| | | } |
| | | } |
| | | return cropped; |
| | | } |
| | | |
| | | int best_3d_shift_r(image a, image b, int min, int max) |
| | | { |
| | | if(min == max) return min; |
| | | int mid = floor((min + max) / 2.); |
| | | image c1 = crop_image(b, 0, mid, b.w, b.h); |
| | | image c2 = crop_image(b, 0, mid+1, b.w, b.h); |
| | | float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 10); |
| | | float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 10); |
| | | free_image(c1); |
| | | free_image(c2); |
| | | if(d1 < d2) return best_3d_shift_r(a, b, min, mid); |
| | | else return best_3d_shift_r(a, b, mid+1, max); |
| | | } |
| | | |
| | | void save_image(image p, char *name) |
| | | int best_3d_shift(image a, image b, int min, int max) |
| | | { |
| | | int i,j,k; |
| | | image copy = copy_image(p); |
| | | normalize_image(copy); |
| | | int i; |
| | | int best = 0; |
| | | float best_distance = FLT_MAX; |
| | | for(i = min; i <= max; i += 2){ |
| | | image c = crop_image(b, 0, i, b.w, b.h); |
| | | float d = dist_array(c.data, a.data, a.w*a.h*a.c, 100); |
| | | if(d < best_distance){ |
| | | best_distance = d; |
| | | best = i; |
| | | } |
| | | printf("%d %f\n", i, d); |
| | | free_image(c); |
| | | } |
| | | return best; |
| | | } |
| | | |
| | | char buff[256]; |
| | | //sprintf(buff, "%s (%d)", name, windows); |
| | | sprintf(buff, "%s.png", name); |
| | | void composite_3d(char *f1, char *f2, char *out) |
| | | { |
| | | if(!out) out = "out"; |
| | | image a = load_image(f1, 0,0,0); |
| | | image b = load_image(f2, 0,0,0); |
| | | int shift = best_3d_shift_r(a, b, -a.h/100, a.h/100); |
| | | |
| | | IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
| | | int step = disp->widthStep; |
| | | for(i = 0; i < p.h; ++i){ |
| | | for(j = 0; j < p.w; ++j){ |
| | | for(k= 0; k < p.c; ++k){ |
| | | disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255); |
| | | image c1 = crop_image(b, 10, shift, b.w, b.h); |
| | | float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 100); |
| | | image c2 = crop_image(b, -10, shift, b.w, b.h); |
| | | float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100); |
| | | |
| | | if(d2 < d1){ |
| | | image swap = a; |
| | | a = b; |
| | | b = swap; |
| | | shift = -shift; |
| | | printf("swapped, %d\n", shift); |
| | | } |
| | | else{ |
| | | printf("%d\n", shift); |
| | | } |
| | | |
| | | image c = crop_image(b, 0, shift, a.w, a.h); |
| | | int i; |
| | | for(i = 0; i < c.w*c.h; ++i){ |
| | | c.data[i] = a.data[i]; |
| | | } |
| | | #ifdef OPENCV |
| | | save_image_jpg(c, out); |
| | | #else |
| | | save_image(c, out); |
| | | #endif |
| | | } |
| | | |
| | | image resize_min(image im, int min) |
| | | { |
| | | int w = im.w; |
| | | int h = im.h; |
| | | if(w < h){ |
| | | h = (h * min) / w; |
| | | w = min; |
| | | } else { |
| | | w = (w * min) / h; |
| | | h = min; |
| | | } |
| | | if(w == im.w && h == im.h) return im; |
| | | image resized = resize_image(im, w, h); |
| | | return resized; |
| | | } |
| | | |
| | | image random_crop_image(image im, int low, int high, int size) |
| | | { |
| | | int r = rand_int(low, high); |
| | | image resized = resize_min(im, r); |
| | | int dx = rand_int(0, resized.w - size); |
| | | int dy = rand_int(0, resized.h - size); |
| | | image crop = crop_image(resized, dx, dy, size, size); |
| | | |
| | | if(resized.data != im.data) free_image(resized); |
| | | return crop; |
| | | } |
| | | |
| | | float three_way_max(float a, float b, float c) |
| | | { |
| | | return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ; |
| | | } |
| | | |
| | | float three_way_min(float a, float b, float c) |
| | | { |
| | | return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ; |
| | | } |
| | | |
| | | // http://www.cs.rit.edu/~ncs/color/t_convert.html |
| | | void rgb_to_hsv(image im) |
| | | { |
| | | assert(im.c == 3); |
| | | int i, j; |
| | | float r, g, b; |
| | | float h, s, v; |
| | | for(j = 0; j < im.h; ++j){ |
| | | for(i = 0; i < im.w; ++i){ |
| | | r = get_pixel(im, i , j, 0); |
| | | g = get_pixel(im, i , j, 1); |
| | | b = get_pixel(im, i , j, 2); |
| | | float max = three_way_max(r,g,b); |
| | | float min = three_way_min(r,g,b); |
| | | float delta = max - min; |
| | | v = max; |
| | | if(max == 0){ |
| | | s = 0; |
| | | h = -1; |
| | | }else{ |
| | | s = delta/max; |
| | | if(r == max){ |
| | | h = (g - b) / delta; |
| | | } else if (g == max) { |
| | | h = 2 + (b - r) / delta; |
| | | } else { |
| | | h = 4 + (r - g) / delta; |
| | | } |
| | | if (h < 0) h += 6; |
| | | } |
| | | set_pixel(im, i, j, 0, h); |
| | | set_pixel(im, i, j, 1, s); |
| | | set_pixel(im, i, j, 2, v); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void hsv_to_rgb(image im) |
| | | { |
| | | assert(im.c == 3); |
| | | int i, j; |
| | | float r, g, b; |
| | | float h, s, v; |
| | | float f, p, q, t; |
| | | for(j = 0; j < im.h; ++j){ |
| | | for(i = 0; i < im.w; ++i){ |
| | | h = get_pixel(im, i , j, 0); |
| | | s = get_pixel(im, i , j, 1); |
| | | v = get_pixel(im, i , j, 2); |
| | | if (s == 0) { |
| | | r = g = b = v; |
| | | } else { |
| | | int index = floor(h); |
| | | f = h - index; |
| | | p = v*(1-s); |
| | | q = v*(1-s*f); |
| | | t = v*(1-s*(1-f)); |
| | | if(index == 0){ |
| | | r = v; g = t; b = p; |
| | | } else if(index == 1){ |
| | | r = q; g = v; b = p; |
| | | } else if(index == 2){ |
| | | r = p; g = v; b = t; |
| | | } else if(index == 3){ |
| | | r = p; g = q; b = v; |
| | | } else if(index == 4){ |
| | | r = t; g = p; b = v; |
| | | } else { |
| | | r = v; g = p; b = q; |
| | | } |
| | | } |
| | | set_pixel(im, i, j, 0, r); |
| | | set_pixel(im, i, j, 1, g); |
| | | set_pixel(im, i, j, 2, b); |
| | | } |
| | | } |
| | | } |
| | | |
| | | image grayscale_image(image im) |
| | | { |
| | | assert(im.c == 3); |
| | | int i, j, k; |
| | | image gray = make_image(im.w, im.h, 1); |
| | | float scale[] = {0.587, 0.299, 0.114}; |
| | | for(k = 0; k < im.c; ++k){ |
| | | for(j = 0; j < im.h; ++j){ |
| | | for(i = 0; i < im.w; ++i){ |
| | | gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k); |
| | | } |
| | | } |
| | | } |
| | | free_image(copy); |
| | | cvSaveImage(buff, disp,0); |
| | | cvReleaseImage(&disp); |
| | | return gray; |
| | | } |
| | | |
| | | void show_image_layers(image p, char *name) |
| | | image threshold_image(image im, float thresh) |
| | | { |
| | | int i; |
| | | char buff[256]; |
| | | for(i = 0; i < p.c; ++i){ |
| | | sprintf(buff, "%s - Layer %d", name, i); |
| | | image layer = get_image_layer(p, i); |
| | | show_image(layer, buff); |
| | | free_image(layer); |
| | | image t = make_image(im.w, im.h, im.c); |
| | | for(i = 0; i < im.w*im.h*im.c; ++i){ |
| | | t.data[i] = im.data[i]>thresh ? 1 : 0; |
| | | } |
| | | return t; |
| | | } |
| | | |
| | | void show_image_collapsed(image p, char *name) |
| | | image blend_image(image fore, image back, float alpha) |
| | | { |
| | | image c = collapse_image_layers(p, 1); |
| | | show_image(c, name); |
| | | free_image(c); |
| | | } |
| | | |
| | | image make_empty_image(int h, int w, int c) |
| | | { |
| | | image out; |
| | | out.data = 0; |
| | | out.h = h; |
| | | out.w = w; |
| | | out.c = c; |
| | | return out; |
| | | } |
| | | |
| | | image make_image(int h, int w, int c) |
| | | { |
| | | image out = make_empty_image(h,w,c); |
| | | out.data = calloc(h*w*c, sizeof(float)); |
| | | return out; |
| | | } |
| | | |
| | | image float_to_image(int h, int w, int c, float *data) |
| | | { |
| | | image out = make_empty_image(h,w,c); |
| | | out.data = data; |
| | | return out; |
| | | } |
| | | |
| | | void zero_image(image m) |
| | | { |
| | | memset(m.data, 0, m.h*m.w*m.c*sizeof(float)); |
| | | } |
| | | |
| | | void zero_channel(image m, int c) |
| | | { |
| | | memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(float)); |
| | | } |
| | | |
| | | void rotate_image(image m) |
| | | { |
| | | int i,j; |
| | | for(j = 0; j < m.c; ++j){ |
| | | for(i = 0; i < m.h*m.w/2; ++i){ |
| | | float swap = m.data[j*m.h*m.w + i]; |
| | | m.data[j*m.h*m.w + i] = m.data[j*m.h*m.w + (m.h*m.w-1 - i)]; |
| | | m.data[j*m.h*m.w + (m.h*m.w-1 - i)] = swap; |
| | | } |
| | | } |
| | | } |
| | | |
| | | image make_random_image(int h, int w, int c) |
| | | { |
| | | image out = make_image(h,w,c); |
| | | int i; |
| | | for(i = 0; i < h*w*c; ++i){ |
| | | out.data[i] = rand_normal(); |
| | | //out.data[i] = rand()%3; |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | void add_into_image(image src, image dest, int h, int w) |
| | | { |
| | | int i,j,k; |
| | | for(k = 0; k < src.c; ++k){ |
| | | for(i = 0; i < src.h; ++i){ |
| | | for(j = 0; j < src.w; ++j){ |
| | | add_pixel(dest, h+i, w+j, k, get_pixel(src, i, j, k)); |
| | | assert(fore.w == back.w && fore.h == back.h && fore.c == back.c); |
| | | image blend = make_image(fore.w, fore.h, fore.c); |
| | | int i, j, k; |
| | | for(k = 0; k < fore.c; ++k){ |
| | | for(j = 0; j < fore.h; ++j){ |
| | | for(i = 0; i < fore.w; ++i){ |
| | | float val = alpha * get_pixel(fore, i, j, k) + |
| | | (1 - alpha)* get_pixel(back, i, j, k); |
| | | set_pixel(blend, i, j, k, val); |
| | | } |
| | | } |
| | | } |
| | | return blend; |
| | | } |
| | | |
| | | void translate_image(image m, float s) |
| | | void scale_image_channel(image im, int c, float v) |
| | | { |
| | | int i, j; |
| | | for(j = 0; j < im.h; ++j){ |
| | | for(i = 0; i < im.w; ++i){ |
| | | float pix = get_pixel(im, i, j, c); |
| | | pix = pix*v; |
| | | set_pixel(im, i, j, c, pix); |
| | | } |
| | | } |
| | | } |
| | | |
| | | image binarize_image(image im) |
| | | { |
| | | image c = copy_image(im); |
| | | int i; |
| | | for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; |
| | | for(i = 0; i < im.w * im.h * im.c; ++i){ |
| | | if(c.data[i] > .5) c.data[i] = 1; |
| | | else c.data[i] = 0; |
| | | } |
| | | return c; |
| | | } |
| | | |
| | | void scale_image(image m, float s) |
| | | void saturate_image(image im, float sat) |
| | | { |
| | | int i; |
| | | for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; |
| | | rgb_to_hsv(im); |
| | | scale_image_channel(im, 1, sat); |
| | | hsv_to_rgb(im); |
| | | constrain_image(im); |
| | | } |
| | | |
| | | image make_random_kernel(int size, int c, float scale) |
| | | void exposure_image(image im, float sat) |
| | | { |
| | | int pad; |
| | | if((pad=(size%2==0))) ++size; |
| | | image out = make_random_image(size,size,c); |
| | | scale_image(out, scale); |
| | | int i,k; |
| | | if(pad){ |
| | | for(k = 0; k < out.c; ++k){ |
| | | for(i = 0; i < size; ++i) { |
| | | set_pixel(out, i, 0, k, 0); |
| | | set_pixel(out, 0, i, k, 0); |
| | | rgb_to_hsv(im); |
| | | scale_image_channel(im, 2, sat); |
| | | hsv_to_rgb(im); |
| | | constrain_image(im); |
| | | } |
| | | |
| | | void saturate_exposure_image(image im, float sat, float exposure) |
| | | { |
| | | rgb_to_hsv(im); |
| | | scale_image_channel(im, 1, sat); |
| | | scale_image_channel(im, 2, exposure); |
| | | hsv_to_rgb(im); |
| | | constrain_image(im); |
| | | } |
| | | |
| | | /* |
| | | image saturate_image(image im, float sat) |
| | | { |
| | | image gray = grayscale_image(im); |
| | | image blend = blend_image(im, gray, sat); |
| | | free_image(gray); |
| | | constrain_image(blend); |
| | | return blend; |
| | | } |
| | | |
| | | image brightness_image(image im, float b) |
| | | { |
| | | image bright = make_image(im.w, im.h, im.c); |
| | | return bright; |
| | | } |
| | | */ |
| | | |
| | | float bilinear_interpolate(image im, float x, float y, int c) |
| | | { |
| | | int ix = (int) floorf(x); |
| | | int iy = (int) floorf(y); |
| | | |
| | | float dx = x - ix; |
| | | float dy = y - iy; |
| | | |
| | | float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + |
| | | dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + |
| | | (1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) + |
| | | dy * dx * get_pixel_extend(im, ix+1, iy+1, c); |
| | | return val; |
| | | } |
| | | |
| | | image resize_image(image im, int w, int h) |
| | | { |
| | | image resized = make_image(w, h, im.c); |
| | | image part = make_image(w, im.h, im.c); |
| | | int r, c, k; |
| | | float w_scale = (float)(im.w - 1) / (w - 1); |
| | | float h_scale = (float)(im.h - 1) / (h - 1); |
| | | for(k = 0; k < im.c; ++k){ |
| | | for(r = 0; r < im.h; ++r){ |
| | | for(c = 0; c < w; ++c){ |
| | | float val = 0; |
| | | if(c == w-1 || im.w == 1){ |
| | | val = get_pixel(im, im.w-1, r, k); |
| | | } else { |
| | | float sx = c*w_scale; |
| | | int ix = (int) sx; |
| | | float dx = sx - ix; |
| | | val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k); |
| | | } |
| | | set_pixel(part, c, r, k, val); |
| | | } |
| | | } |
| | | } |
| | | return out; |
| | | for(k = 0; k < im.c; ++k){ |
| | | for(r = 0; r < h; ++r){ |
| | | float sy = r*h_scale; |
| | | int iy = (int) sy; |
| | | float dy = sy - iy; |
| | | for(c = 0; c < w; ++c){ |
| | | float val = (1-dy) * get_pixel(part, c, iy, k); |
| | | set_pixel(resized, c, r, k, val); |
| | | } |
| | | if(r == h-1 || im.h == 1) continue; |
| | | for(c = 0; c < w; ++c){ |
| | | float val = dy * get_pixel(part, c, iy+1, k); |
| | | add_pixel(resized, c, r, k, val); |
| | | } |
| | | } |
| | | } |
| | | |
| | | free_image(part); |
| | | return resized; |
| | | } |
| | | |
| | | // Returns a new image that is a cropped version (rectangular cut-out) |
| | | // of the original image. |
| | | IplImage* cropImage(const IplImage *img, const CvRect region) |
| | | #include "cuda.h" |
| | | |
| | | void test_resize(char *filename) |
| | | { |
| | | IplImage *imageCropped; |
| | | CvSize size; |
| | | image im = load_image(filename, 0,0, 3); |
| | | float mag = mag_array(im.data, im.w*im.h*im.c); |
| | | printf("L2 Norm: %f\n", mag); |
| | | image gray = grayscale_image(im); |
| | | |
| | | if (img->width <= 0 || img->height <= 0 |
| | | || region.width <= 0 || region.height <= 0) { |
| | | //cerr << "ERROR in cropImage(): invalid dimensions." << endl; |
| | | exit(1); |
| | | } |
| | | image sat2 = copy_image(im); |
| | | saturate_image(sat2, 2); |
| | | |
| | | if (img->depth != IPL_DEPTH_8U) { |
| | | //cerr << "ERROR in cropImage(): image depth is not 8." << endl; |
| | | exit(1); |
| | | } |
| | | image sat5 = copy_image(im); |
| | | saturate_image(sat5, .5); |
| | | |
| | | // Set the desired region of interest. |
| | | cvSetImageROI((IplImage*)img, region); |
| | | // Copy region of interest into a new iplImage and return it. |
| | | size.width = region.width; |
| | | size.height = region.height; |
| | | imageCropped = cvCreateImage(size, IPL_DEPTH_8U, img->nChannels); |
| | | cvCopy(img, imageCropped,NULL); // Copy just the region. |
| | | image exp2 = copy_image(im); |
| | | exposure_image(exp2, 2); |
| | | |
| | | return imageCropped; |
| | | image exp5 = copy_image(im); |
| | | exposure_image(exp5, .5); |
| | | |
| | | image bin = binarize_image(im); |
| | | |
| | | #ifdef GPU |
| | | image r = resize_image(im, im.w, im.h); |
| | | image black = make_image(im.w*2 + 3, im.h*2 + 3, 9); |
| | | image black2 = make_image(im.w, im.h, 3); |
| | | |
| | | float *r_gpu = cuda_make_array(r.data, r.w*r.h*r.c); |
| | | float *black_gpu = cuda_make_array(black.data, black.w*black.h*black.c); |
| | | float *black2_gpu = cuda_make_array(black2.data, black2.w*black2.h*black2.c); |
| | | shortcut_gpu(3, r.w, r.h, 1, r_gpu, black.w, black.h, 3, black_gpu); |
| | | //flip_image(r); |
| | | //shortcut_gpu(3, r.w, r.h, 1, r.data, black.w, black.h, 3, black.data); |
| | | |
| | | shortcut_gpu(3, black.w, black.h, 3, black_gpu, black2.w, black2.h, 1, black2_gpu); |
| | | cuda_pull_array(black_gpu, black.data, black.w*black.h*black.c); |
| | | cuda_pull_array(black2_gpu, black2.data, black2.w*black2.h*black2.c); |
| | | show_image_layers(black, "Black"); |
| | | show_image(black2, "Recreate"); |
| | | #endif |
| | | |
| | | show_image(im, "Original"); |
| | | show_image(bin, "Binary"); |
| | | show_image(gray, "Gray"); |
| | | show_image(sat2, "Saturation-2"); |
| | | show_image(sat5, "Saturation-.5"); |
| | | show_image(exp2, "Exposure-2"); |
| | | show_image(exp5, "Exposure-.5"); |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | #endif |
| | | } |
| | | |
| | | // Creates a new image copy that is of a desired size. The aspect ratio will |
| | | // be kept constant if 'keepAspectRatio' is true, by cropping undesired parts |
| | | // so that only pixels of the original image are shown, instead of adding |
| | | // extra blank space. |
| | | // Remember to free the new image later. |
| | | IplImage* resizeImage(const IplImage *origImg, int newHeight, int newWidth, |
| | | int keepAspectRatio) |
| | | { |
| | | IplImage *outImg = 0; |
| | | int origWidth = 0; |
| | | int origHeight = 0; |
| | | if (origImg) { |
| | | origWidth = origImg->width; |
| | | origHeight = origImg->height; |
| | | } |
| | | if (newWidth <= 0 || newHeight <= 0 || origImg == 0 |
| | | || origWidth <= 0 || origHeight <= 0) { |
| | | //cerr << "ERROR: Bad desired image size of " << newWidth |
| | | // << "x" << newHeight << " in resizeImage().\n"; |
| | | exit(1); |
| | | } |
| | | |
| | | if (keepAspectRatio) { |
| | | // Resize the image without changing its aspect ratio, |
| | | // by cropping off the edges and enlarging the middle section. |
| | | CvRect r; |
| | | // input aspect ratio |
| | | float origAspect = (origWidth / (float)origHeight); |
| | | // output aspect ratio |
| | | float newAspect = (newWidth / (float)newHeight); |
| | | // crop width to be origHeight * newAspect |
| | | if (origAspect > newAspect) { |
| | | int tw = (origHeight * newWidth) / newHeight; |
| | | r = cvRect((origWidth - tw)/2, 0, tw, origHeight); |
| | | } |
| | | else { // crop height to be origWidth / newAspect |
| | | int th = (origWidth * newHeight) / newWidth; |
| | | r = cvRect(0, (origHeight - th)/2, origWidth, th); |
| | | } |
| | | IplImage *croppedImg = cropImage(origImg, r); |
| | | |
| | | // Call this function again, with the new aspect ratio image. |
| | | // Will do a scaled image resize with the correct aspect ratio. |
| | | outImg = resizeImage(croppedImg, newHeight, newWidth, 0); |
| | | cvReleaseImage( &croppedImg ); |
| | | |
| | | } |
| | | else { |
| | | |
| | | // Scale the image to the new dimensions, |
| | | // even if the aspect ratio will be changed. |
| | | outImg = cvCreateImage(cvSize(newWidth, newHeight), |
| | | origImg->depth, origImg->nChannels); |
| | | if (newWidth > origImg->width && newHeight > origImg->height) { |
| | | // Make the image larger |
| | | cvResetImageROI((IplImage*)origImg); |
| | | // CV_INTER_LINEAR: good at enlarging. |
| | | // CV_INTER_CUBIC: good at enlarging. |
| | | cvResize(origImg, outImg, CV_INTER_LINEAR); |
| | | } |
| | | else { |
| | | // Make the image smaller |
| | | cvResetImageROI((IplImage*)origImg); |
| | | // CV_INTER_AREA: good at shrinking (decimation) only. |
| | | cvResize(origImg, outImg, CV_INTER_AREA); |
| | | } |
| | | |
| | | } |
| | | return outImg; |
| | | } |
| | | |
| | | #ifdef OPENCV |
| | | image ipl_to_image(IplImage* src) |
| | | { |
| | | unsigned char *data = (unsigned char *)src->imageData; |
| | |
| | | int w = src->width; |
| | | int c = src->nChannels; |
| | | int step = src->widthStep; |
| | | image out = make_image(h,w,c); |
| | | image out = make_image(w, h, c); |
| | | int i, j, k, count=0;; |
| | | |
| | | for(k= 0; k < c; ++k){ |
| | | for(i = 0; i < h; ++i){ |
| | | for(j = 0; j < w; ++j){ |
| | | out.data[count++] = data[i*step + j*c + k]; |
| | | out.data[count++] = data[i*step + j*c + k]/255.; |
| | | } |
| | | } |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | image load_image(char *filename, int h, int w) |
| | | image load_image_cv(char *filename, int channels) |
| | | { |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(filename,-1)) == 0 ) |
| | | { |
| | | printf("Cannot load file image %s\n", filename); |
| | | exit(0); |
| | | int flag = -1; |
| | | if (channels == 0) flag = -1; |
| | | else if (channels == 1) flag = 0; |
| | | else if (channels == 3) flag = 1; |
| | | else { |
| | | fprintf(stderr, "OpenCV can't force load with %d channels\n", channels); |
| | | } |
| | | if(h && w ){ |
| | | IplImage *resized = resizeImage(src, h, w, 1); |
| | | cvReleaseImage(&src); |
| | | src = resized; |
| | | |
| | | if( (src = cvLoadImage(filename, flag)) == 0 ) |
| | | { |
| | | fprintf(stderr, "Cannot load image \"%s\"\n", filename); |
| | | char buff[256]; |
| | | sprintf(buff, "echo %s >> bad.list", filename); |
| | | system(buff); |
| | | return make_image(10,10,3); |
| | | //exit(0); |
| | | } |
| | | image out = ipl_to_image(src); |
| | | cvReleaseImage(&src); |
| | | rgbgr_image(out); |
| | | return out; |
| | | } |
| | | |
| | | #endif |
| | | |
| | | |
| | | image load_image_stb(char *filename, int channels) |
| | | { |
| | | int w, h, c; |
| | | unsigned char *data = stbi_load(filename, &w, &h, &c, channels); |
| | | if (!data) { |
| | | fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", filename, stbi_failure_reason()); |
| | | exit(0); |
| | | } |
| | | if(channels) c = channels; |
| | | int i,j,k; |
| | | image im = make_image(w, h, c); |
| | | for(k = 0; k < c; ++k){ |
| | | for(j = 0; j < h; ++j){ |
| | | for(i = 0; i < w; ++i){ |
| | | int dst_index = i + w*j + w*h*k; |
| | | int src_index = k + c*i + c*w*j; |
| | | im.data[dst_index] = (float)data[src_index]/255.; |
| | | } |
| | | } |
| | | } |
| | | free(data); |
| | | return im; |
| | | } |
| | | |
| | | image load_image(char *filename, int w, int h, int c) |
| | | { |
| | | #ifdef OPENCV |
| | | image out = load_image_cv(filename, c); |
| | | #else |
| | | image out = load_image_stb(filename, c); |
| | | #endif |
| | | |
| | | if((h && w) && (h != out.h || w != out.w)){ |
| | | image resized = resize_image(out, w, h); |
| | | free_image(out); |
| | | out = resized; |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | image load_image_color(char *filename, int w, int h) |
| | | { |
| | | return load_image(filename, w, h, 3); |
| | | } |
| | | |
| | | image get_image_layer(image m, int l) |
| | | { |
| | | image out = make_image(m.h, m.w, 1); |
| | | image out = make_image(m.w, m.h, 1); |
| | | int i; |
| | | for(i = 0; i < m.h*m.w; ++i){ |
| | | out.data[i] = m.data[i+l*m.h*m.w]; |
| | | } |
| | | return out; |
| | | } |
| | | image get_sub_image(image m, int h, int w, int dh, int dw) |
| | | { |
| | | image out = make_image(dh, dw, m.c); |
| | | int i,j,k; |
| | | for(k = 0; k < out.c; ++k){ |
| | | for(i = 0; i < dh; ++i){ |
| | | for(j = 0; j < dw; ++j){ |
| | | float val = get_pixel(m, h+i, w+j, k); |
| | | set_pixel(out, i, j, k, val); |
| | | } |
| | | } |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | float get_pixel(image m, int x, int y, int c) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | return m.data[c*m.h*m.w + x*m.w + y]; |
| | | assert(x < m.w && y < m.h && c < m.c); |
| | | return m.data[c*m.h*m.w + y*m.w + x]; |
| | | } |
| | | float get_pixel_extend(image m, int x, int y, int c) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return 0; |
| | | if(x < 0 || x >= m.w || y < 0 || y >= m.h || c < 0 || c >= m.c) return 0; |
| | | return get_pixel(m, x, y, c); |
| | | } |
| | | void set_pixel(image m, int x, int y, int c, float val) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | m.data[c*m.h*m.w + x*m.w + y] = val; |
| | | assert(x < m.w && y < m.h && c < m.c); |
| | | m.data[c*m.h*m.w + y*m.w + x] = val; |
| | | } |
| | | void set_pixel_extend(image m, int x, int y, int c, float val) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; |
| | | set_pixel(m, x, y, c, val); |
| | | } |
| | | |
| | | void add_pixel(image m, int x, int y, int c, float val) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | m.data[c*m.h*m.w + x*m.w + y] += val; |
| | | } |
| | | |
| | | void add_pixel_extend(image m, int x, int y, int c, float val) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; |
| | | add_pixel(m, x, y, c, val); |
| | | } |
| | | |
| | | void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge) |
| | | { |
| | | int x,y,i,j; |
| | | int xstart, xend, ystart, yend; |
| | | if(edge){ |
| | | xstart = ystart = 0; |
| | | xend = m.h; |
| | | yend = m.w; |
| | | }else{ |
| | | xstart = kernel.h/2; |
| | | ystart = kernel.w/2; |
| | | xend = m.h-kernel.h/2; |
| | | yend = m.w - kernel.w/2; |
| | | } |
| | | for(x = xstart; x < xend; x += stride){ |
| | | for(y = ystart; y < yend; y += stride){ |
| | | float sum = 0; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | | sum += get_pixel(kernel, i, j, kc)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, mc); |
| | | } |
| | | } |
| | | add_pixel(out, (x-xstart)/stride, (y-ystart)/stride, oc, sum); |
| | | } |
| | | } |
| | | } |
| | | |
| | | float single_convolve(image m, image kernel, int x, int y) |
| | | { |
| | | float sum = 0; |
| | | int i, j, k; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | | for(k = 0; k < kernel.c; ++k){ |
| | | sum += get_pixel(kernel, i, j, k)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k); |
| | | } |
| | | } |
| | | } |
| | | return sum; |
| | | } |
| | | |
| | | void convolve(image m, image kernel, int stride, int channel, image out, int edge) |
| | | { |
| | | assert(m.c == kernel.c); |
| | | int i; |
| | | zero_channel(out, channel); |
| | | for(i = 0; i < m.c; ++i){ |
| | | two_d_convolve(m, i, kernel, i, stride, out, channel, edge); |
| | | } |
| | | /* |
| | | int j; |
| | | for(i = 0; i < m.h; i += stride){ |
| | | for(j = 0; j < m.w; j += stride){ |
| | | float val = single_convolve(m, kernel, i, j); |
| | | set_pixel(out, i/stride, j/stride, channel, val); |
| | | } |
| | | } |
| | | */ |
| | | } |
| | | |
| | | void upsample_image(image m, int stride, image out) |
| | | { |
| | | int i,j,k; |
| | | zero_image(out); |
| | | for(k = 0; k < m.c; ++k){ |
| | | for(i = 0; i < m.h; ++i){ |
| | | for(j = 0; j< m.w; ++j){ |
| | | float val = get_pixel(m, i, j, k); |
| | | set_pixel(out, i*stride, j*stride, k, val); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void single_update(image m, image update, int x, int y, float error) |
| | | { |
| | | int i, j, k; |
| | | for(i = 0; i < update.h; ++i){ |
| | | for(j = 0; j < update.w; ++j){ |
| | | for(k = 0; k < update.c; ++k){ |
| | | float val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k); |
| | | add_pixel(update, i, j, k, val*error); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void kernel_update(image m, image update, int stride, int channel, image out, int edge) |
| | | { |
| | | assert(m.c == update.c); |
| | | zero_image(update); |
| | | int i, j, istart, jstart, iend, jend; |
| | | if(edge){ |
| | | istart = jstart = 0; |
| | | iend = m.h; |
| | | jend = m.w; |
| | | }else{ |
| | | istart = update.h/2; |
| | | jstart = update.w/2; |
| | | iend = m.h-update.h/2; |
| | | jend = m.w - update.w/2; |
| | | } |
| | | for(i = istart; i < iend; i += stride){ |
| | | for(j = jstart; j < jend; j += stride){ |
| | | float error = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
| | | single_update(m, update, i, j, error); |
| | | } |
| | | } |
| | | /* |
| | | for(i = 0; i < update.h*update.w*update.c; ++i){ |
| | | update.data[i] /= (m.h/stride)*(m.w/stride); |
| | | } |
| | | */ |
| | | } |
| | | |
| | | void single_back_convolve(image m, image kernel, int x, int y, float val) |
| | | { |
| | | int i, j, k; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | | for(k = 0; k < kernel.c; ++k){ |
| | | float pval = get_pixel(kernel, i, j, k) * val; |
| | | add_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k, pval); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void back_convolve(image m, image kernel, int stride, int channel, image out, int edge) |
| | | { |
| | | assert(m.c == kernel.c); |
| | | int i, j, istart, jstart, iend, jend; |
| | | if(edge){ |
| | | istart = jstart = 0; |
| | | iend = m.h; |
| | | jend = m.w; |
| | | }else{ |
| | | istart = kernel.h/2; |
| | | jstart = kernel.w/2; |
| | | iend = m.h-kernel.h/2; |
| | | jend = m.w - kernel.w/2; |
| | | } |
| | | for(i = istart; i < iend; i += stride){ |
| | | for(j = jstart; j < jend; j += stride){ |
| | | float val = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
| | | single_back_convolve(m, kernel, i, j, val); |
| | | } |
| | | } |
| | | assert(x < m.w && y < m.h && c < m.c); |
| | | m.data[c*m.h*m.w + y*m.w + x] += val; |
| | | } |
| | | |
| | | void print_image(image m) |
| | | { |
| | | int i; |
| | | for(i =0 ; i < m.h*m.w*m.c; ++i) printf("%lf, ", m.data[i]); |
| | | int i, j, k; |
| | | for(i =0 ; i < m.c; ++i){ |
| | | for(j =0 ; j < m.h; ++j){ |
| | | for(k = 0; k < m.w; ++k){ |
| | | printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]); |
| | | if(k > 30) break; |
| | | } |
| | | printf("\n"); |
| | | if(j > 30) break; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | image collapse_images_vert(image *ims, int n) |
| | | { |
| | | int color = 1; |
| | |
| | | c = 1; |
| | | } |
| | | |
| | | image filters = make_image(h,w,c); |
| | | image filters = make_image(w, h, c); |
| | | int i,j; |
| | | for(i = 0; i < n; ++i){ |
| | | int h_offset = i*(ims[0].h+border); |
| | | image copy = copy_image(ims[i]); |
| | | //normalize_image(copy); |
| | | if(c == 3 && color){ |
| | | embed_image(copy, filters, h_offset, 0); |
| | | embed_image(copy, filters, 0, h_offset); |
| | | } |
| | | else{ |
| | | for(j = 0; j < copy.c; ++j){ |
| | | int w_offset = j*(ims[0].w+border); |
| | | image layer = get_image_layer(copy, j); |
| | | embed_image(layer, filters, h_offset, w_offset); |
| | | embed_image(layer, filters, w_offset, h_offset); |
| | | free_image(layer); |
| | | } |
| | | } |
| | |
| | | c = 1; |
| | | } |
| | | |
| | | image filters = make_image(h,w,c); |
| | | image filters = make_image(w, h, c); |
| | | int i,j; |
| | | for(i = 0; i < n; ++i){ |
| | | int w_offset = i*(size+border); |
| | | image copy = copy_image(ims[i]); |
| | | //normalize_image(copy); |
| | | if(c == 3 && color){ |
| | | embed_image(copy, filters, 0, w_offset); |
| | | embed_image(copy, filters, w_offset, 0); |
| | | } |
| | | else{ |
| | | for(j = 0; j < copy.c; ++j){ |
| | | int h_offset = j*(size+border); |
| | | image layer = get_image_layer(copy, j); |
| | | embed_image(layer, filters, h_offset, w_offset); |
| | | embed_image(layer, filters, w_offset, h_offset); |
| | | free_image(layer); |
| | | } |
| | | } |
| | |
| | | return filters; |
| | | } |
| | | |
| | | void show_image_normalized(image im, const char *name) |
| | | { |
| | | image c = copy_image(im); |
| | | normalize_image(c); |
| | | show_image(c, name); |
| | | free_image(c); |
| | | } |
| | | |
| | | void show_images(image *ims, int n, char *window) |
| | | { |
| | | image m = collapse_images_vert(ims, n); |
| | | //save_image(m, window); |
| | | show_image(m, window); |
| | | /* |
| | | int w = 448; |
| | | int h = ((float)m.h/m.w) * 448; |
| | | if(h > 896){ |
| | | h = 896; |
| | | w = ((float)m.w/m.h) * 896; |
| | | } |
| | | image sized = resize_image(m, w, h); |
| | | */ |
| | | normalize_image(m); |
| | | image sized = resize_image(m, m.w, m.h); |
| | | save_image(sized, window); |
| | | show_image(sized, window); |
| | | free_image(sized); |
| | | free_image(m); |
| | | } |
| | | |
| | | image grid_images(image **ims, int h, int w) |
| | | { |
| | | int i; |
| | | image *rows = calloc(h, sizeof(image)); |
| | | for(i = 0; i < h; ++i){ |
| | | rows[i] = collapse_images_horz(ims[i], w); |
| | | } |
| | | image out = collapse_images_vert(rows, h); |
| | | for(i = 0; i < h; ++i){ |
| | | free_image(rows[i]); |
| | | } |
| | | free(rows); |
| | | return out; |
| | | } |
| | | |
| | | void test_grid() |
| | | { |
| | | int i,j; |
| | | int num = 3; |
| | | int topk = 3; |
| | | image **vizs = calloc(num, sizeof(image*)); |
| | | for(i = 0; i < num; ++i){ |
| | | vizs[i] = calloc(topk, sizeof(image)); |
| | | for(j = 0; j < topk; ++j) vizs[i][j] = make_image(3,3,3); |
| | | } |
| | | image grid = grid_images(vizs, num, topk); |
| | | save_image(grid, "Test Grid"); |
| | | free_image(grid); |
| | | } |
| | | |
| | | void show_images_grid(image **ims, int h, int w, char *window) |
| | | { |
| | | image out = grid_images(ims, h, w); |
| | | show_image(out, window); |
| | | free_image(out); |
| | | } |
| | | |
| | | void free_image(image m) |
| | | { |
| | | free(m.data); |