| | |
| | | l.outputs = inputs; |
| | | l.output = calloc(inputs*batch, sizeof(float)); |
| | | l.delta = calloc(inputs*batch, sizeof(float)); |
| | | |
| | | l.forward = forward_softmax_layer; |
| | | l.backward = backward_softmax_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_softmax_layer_gpu; |
| | | l.backward_gpu = backward_softmax_layer_gpu; |
| | | |
| | | l.output_gpu = cuda_make_array(l.output, inputs*batch); |
| | | l.delta_gpu = cuda_make_array(l.delta, inputs*batch); |
| | | #endif |
| | | return l; |
| | | } |
| | | |
| | | void softmax_array(float *input, int n, float temp, float *output) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | float largest = -FLT_MAX; |
| | | for(i = 0; i < n; ++i){ |
| | | if(input[i] > largest) largest = input[i]; |
| | | } |
| | | for(i = 0; i < n; ++i){ |
| | | sum += exp(input[i]/temp-largest/temp); |
| | | } |
| | | if(sum) sum = largest/temp+log(sum); |
| | | else sum = largest-100; |
| | | for(i = 0; i < n; ++i){ |
| | | output[i] = exp(input[i]/temp-sum); |
| | | } |
| | | } |
| | | |
| | | void forward_softmax_layer(const softmax_layer l, network_state state) |
| | | { |
| | | int b; |
| | | int inputs = l.inputs / l.groups; |
| | | int batch = l.batch * l.groups; |
| | | for(b = 0; b < batch; ++b){ |
| | | softmax_array(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs); |
| | | if(l.softmax_tree){ |
| | | for(b = 0; b < batch; ++b){ |
| | | int i; |
| | | int count = 0; |
| | | for(i = 0; i < l.softmax_tree->groups; ++i){ |
| | | int group_size = l.softmax_tree->group_size[i]; |
| | | softmax(state.input+b*inputs + count, group_size, l.temperature, l.output+b*inputs + count); |
| | | count += group_size; |
| | | } |
| | | } |
| | | } else { |
| | | for(b = 0; b < batch; ++b){ |
| | | softmax(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs); |
| | | } |
| | | } |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_softmax_layer_output(const softmax_layer layer) |
| | | { |
| | | cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch); |
| | | } |
| | | |
| | | void forward_softmax_layer_gpu(const softmax_layer l, network_state state) |
| | | { |
| | | int inputs = l.inputs / l.groups; |
| | | int batch = l.batch * l.groups; |
| | | int b; |
| | | if(l.softmax_tree){ |
| | | if(0){ |
| | | float *buff = calloc(inputs * batch, sizeof(float)); |
| | | cuda_pull_array(state.input, buff, batch * inputs); |
| | | state.input = buff; |
| | | forward_softmax_layer(l, state); |
| | | cuda_push_array(l.output_gpu, l.output, batch*inputs); |
| | | free(buff); |
| | | } else { |
| | | int i; |
| | | const int nstreams = 32; |
| | | cudaStream_t streams[nstreams]; |
| | | for (i = 0; i < nstreams; ++i) { |
| | | cudaStreamCreate(&streams[i]); |
| | | } |
| | | for (b = 0; b < batch; ++b) { |
| | | int i; |
| | | int count = 0; |
| | | for (i = 0; i < l.softmax_tree->groups; ++i) { |
| | | int group_size = l.softmax_tree->group_size[i]; |
| | | softmax_gpu(state.input+b*inputs + count, group_size, 1, l.temperature, l.output_gpu+b*inputs + count, streams[(b*l.softmax_tree->groups + i) % nstreams]); |
| | | count += group_size; |
| | | } |
| | | } |
| | | for(i = 0; i < nstreams; ++i){ |
| | | cudaStreamDestroy(streams[i]); |
| | | } |
| | | } |
| | | } else { |
| | | softmax_gpu(state.input, inputs, batch, l.temperature, l.output_gpu, 0); |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer_gpu(const softmax_layer layer, network_state state) |
| | | { |
| | | axpy_ongpu(layer.batch*layer.inputs, 1, layer.delta_gpu, 1, state.delta, 1); |
| | | } |
| | | |
| | | #endif |