| | |
| | | #include "connected_layer.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | #include "cuda.h" |
| | | #include "blas.h" |
| | | #include "gemm.h" |
| | | |
| | | #include <math.h> |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, float dropout, ACTIVATION activation) |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation) |
| | | { |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | int i; |
| | | connected_layer *layer = calloc(1, sizeof(connected_layer)); |
| | | |
| | | layer->inputs = inputs; |
| | | layer->outputs = outputs; |
| | | layer->batch=batch; |
| | | layer->dropout = dropout; |
| | | |
| | | layer->output = calloc(batch*outputs, sizeof(float*)); |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weight_adapt = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weight_momentum = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 1./inputs; |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer->weights[i] = scale*(rand_uniform()); |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->bias_adapt = calloc(outputs, sizeof(float)); |
| | | layer->bias_momentum = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i) |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 1; |
| | | |
| | | layer->weight_prev = calloc(inputs*outputs, sizeof(float)); |
| | | layer->bias_prev = calloc(outputs, sizeof(float)); |
| | | |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | |
| | | |
| | | float scale = 1./sqrt(inputs); |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | layer->weights[i] = 2*scale*rand_uniform() - scale; |
| | | } |
| | | |
| | | for(i = 0; i < outputs; ++i){ |
| | | layer->biases[i] = scale; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | layer->weights_gpu = cuda_make_array(layer->weights, inputs*outputs); |
| | | layer->biases_gpu = cuda_make_array(layer->biases, outputs); |
| | | |
| | | layer->weight_updates_gpu = cuda_make_array(layer->weight_updates, inputs*outputs); |
| | | layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, outputs); |
| | | |
| | | layer->output_gpu = cuda_make_array(layer->output, outputs*batch); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, outputs*batch); |
| | | #endif |
| | | layer->activation = activation; |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | return layer; |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, float step, float momentum, float decay) |
| | | void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | } |
| | | for(i = 0; i < layer.outputs*layer.inputs; ++i){ |
| | | layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i]; |
| | | layer.weights[i] += layer.weight_momentum[i]; |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(float)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float)); |
| | | axpy_cpu(layer.outputs, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.outputs, momentum, layer.bias_updates, 1); |
| | | |
| | | axpy_cpu(layer.inputs*layer.outputs, -decay*batch, layer.weights, 1, layer.weight_updates, 1); |
| | | axpy_cpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates, 1, layer.weights, 1); |
| | | scal_cpu(layer.inputs*layer.outputs, momentum, layer.weight_updates, 1); |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, float *input, int train) |
| | | void forward_connected_layer(connected_layer layer, network_state state) |
| | | { |
| | | if(!train) layer.dropout = 0; |
| | | memcpy(layer.output, layer.biases, layer.outputs*sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | copy_cpu(layer.outputs, layer.biases, 1, layer.output + i*layer.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | float *a = input; |
| | | float *a = state.input; |
| | | float *b = layer.weights; |
| | | float *c = layer.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.dropout); |
| | | activate_array(layer.output, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | | void backward_connected_layer(connected_layer layer, network_state state) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs*layer.batch; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | layer.bias_updates[i%layer.batch] += layer.delta[i]; |
| | | gradient_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.delta); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_cpu(layer.outputs, 1, layer.delta + i*layer.outputs, 1, layer.bias_updates, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | float *a = input; |
| | | float *a = state.input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.inputs; |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.batch; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.weights; |
| | | b = layer.delta; |
| | | c = delta; |
| | | a = layer.delta; |
| | | b = layer.weights; |
| | | c = state.delta; |
| | | |
| | | if(c) gemm(0,0,m,n,k,1,a,k,b,n,0,c,n); |
| | | if(c) gemm(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_connected_layer(connected_layer layer) |
| | | { |
| | | cuda_pull_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
| | | cuda_pull_array(layer.biases_gpu, layer.biases, layer.outputs); |
| | | cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void push_connected_layer(connected_layer layer) |
| | | { |
| | | cuda_push_array(layer.weights_gpu, layer.weights, layer.inputs*layer.outputs); |
| | | cuda_push_array(layer.biases_gpu, layer.biases, layer.outputs); |
| | | cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | axpy_ongpu(layer.outputs, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.outputs, momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(layer.inputs*layer.outputs, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, momentum, layer.weight_updates_gpu, 1); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, network_state state) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | copy_ongpu_offset(layer.outputs, layer.biases_gpu, 0, 1, layer.output_gpu, i*layer.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | | int n = layer.outputs; |
| | | float * a = state.input; |
| | | float * b = layer.weights_gpu; |
| | | float * c = layer.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_connected_layer_gpu(connected_layer layer, network_state state) |
| | | { |
| | | int i; |
| | | gradient_array_ongpu(layer.output_gpu, layer.outputs*layer.batch, layer.activation, layer.delta_gpu); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | axpy_ongpu_offset(layer.outputs, 1, layer.delta_gpu, i*layer.outputs, 1, layer.bias_updates_gpu, 0, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | | int n = layer.outputs; |
| | | float * a = state.input; |
| | | float * b = layer.delta_gpu; |
| | | float * c = layer.weight_updates_gpu; |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |
| | | n = layer.inputs; |
| | | |
| | | a = layer.delta_gpu; |
| | | b = layer.weights_gpu; |
| | | c = state.delta; |
| | | |
| | | if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,0,c,n); |
| | | } |
| | | #endif |