| | |
| | | #include "crop_layer.h" |
| | | #include "cuda.h" |
| | | #include <stdio.h> |
| | | |
| | | image get_crop_image(crop_layer layer) |
| | |
| | | int h = layer.crop_height; |
| | | int w = layer.crop_width; |
| | | int c = layer.c; |
| | | return float_to_image(h,w,c,layer.output); |
| | | return float_to_image(w,h,c,layer.output); |
| | | } |
| | | |
| | | crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip) |
| | | crop_layer *make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle) |
| | | { |
| | | fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c); |
| | | crop_layer *layer = calloc(1, sizeof(crop_layer)); |
| | |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->flip = flip; |
| | | layer->angle = angle; |
| | | layer->crop_width = crop_width; |
| | | layer->crop_height = crop_height; |
| | | layer->output = calloc(crop_width*crop_height * c*batch, sizeof(float)); |
| | | layer->delta = calloc(crop_width*crop_height * c*batch, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_gpu = cuda_make_array(layer->output, crop_width*crop_height*c*batch); |
| | | #endif |
| | | return layer; |
| | | } |
| | | void forward_crop_layer(const crop_layer layer, float *input) |
| | | |
| | | void forward_crop_layer(const crop_layer layer, network_state state) |
| | | { |
| | | int i,j,c,b; |
| | | int dh = rand()%(layer.h - layer.crop_height); |
| | | int dw = rand()%(layer.w - layer.crop_width); |
| | | int i,j,c,b,row,col; |
| | | int index; |
| | | int count = 0; |
| | | if(layer.flip && rand()%2){ |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | for(i = dh; i < dh+layer.crop_height; ++i){ |
| | | for(j = dw+layer.crop_width-1; j >= dw; --j){ |
| | | int index = j+layer.w*(i+layer.h*(c + layer.c*b)); |
| | | layer.output[count++] = input[index]; |
| | | int flip = (layer.flip && rand()%2); |
| | | int dh = rand()%(layer.h - layer.crop_height + 1); |
| | | int dw = rand()%(layer.w - layer.crop_width + 1); |
| | | if(!state.train){ |
| | | flip = 0; |
| | | dh = (layer.h - layer.crop_height)/2; |
| | | dw = (layer.w - layer.crop_width)/2; |
| | | } |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | for(i = 0; i < layer.crop_height; ++i){ |
| | | for(j = 0; j < layer.crop_width; ++j){ |
| | | if(flip){ |
| | | col = layer.w - dw - j - 1; |
| | | }else{ |
| | | col = j + dw; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | }else{ |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | for(i = dh; i < dh+layer.crop_height; ++i){ |
| | | for(j = dw; j < dw+layer.crop_width; ++j){ |
| | | int index = j+layer.w*(i+layer.h*(c + layer.c*b)); |
| | | layer.output[count++] = input[index]; |
| | | } |
| | | row = i + dh; |
| | | index = col+layer.w*(row+layer.h*(c + layer.c*b)); |
| | | layer.output[count++] = state.input[index]; |
| | | } |
| | | } |
| | | } |