| | |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "data.h" |
| | | #include "utils.h" |
| | | #include "params.h" |
| | | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | //#include "old_conv.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | |
| | | char *get_layer_string(LAYER_TYPE a) |
| | | { |
| | | switch(a){ |
| | | case CONVOLUTIONAL: |
| | | return "convolutional"; |
| | | case DECONVOLUTIONAL: |
| | | return "deconvolutional"; |
| | | case CONNECTED: |
| | | return "connected"; |
| | | case MAXPOOL: |
| | | return "maxpool"; |
| | | case SOFTMAX: |
| | | return "softmax"; |
| | | case DETECTION: |
| | | return "detection"; |
| | | case NORMALIZATION: |
| | | return "normalization"; |
| | | case DROPOUT: |
| | | return "dropout"; |
| | | case CROP: |
| | | return "crop"; |
| | | case COST: |
| | | return "cost"; |
| | | default: |
| | | break; |
| | | } |
| | | return "none"; |
| | | } |
| | | |
| | | network make_network(int n) |
| | | { |
| | |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | net.seen = 0; |
| | | net.batch = 0; |
| | | net.inputs = 0; |
| | | net.h = net.w = net.c = 0; |
| | | #ifdef GPU |
| | | net.input_gpu = calloc(1, sizeof(float *)); |
| | | net.truth_gpu = calloc(1, sizeof(float *)); |
| | | #endif |
| | | return net; |
| | | } |
| | | |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[convolutional]\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "activation=%s\n", |
| | | l->h, l->w, l->c, |
| | | l->n, l->size, l->stride, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | void print_connected_cfg(FILE *fp, connected_layer *l) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[connected]\n" |
| | | "input=%d\n" |
| | | "output=%d\n" |
| | | "activation=%s\n", |
| | | l->inputs, l->outputs, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l) |
| | | { |
| | | fprintf(fp, "[maxpool]\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "stride=%d\n\n", |
| | | l->h, l->w, l->c, |
| | | l->stride); |
| | | } |
| | | |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l) |
| | | { |
| | | fprintf(fp, "[softmax]\n" |
| | | "input=%d\n\n", |
| | | l->inputs); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | int i; |
| | | for(i = 0; i < net.n; ++i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL) |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i]); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i]); |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void forward_network(network net, float *input) |
| | | void forward_network(network net, network_state state) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | forward_convolutional_layer(layer, input); |
| | | input = layer.output; |
| | | forward_convolutional_layer(*(convolutional_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | forward_deconvolutional_layer(*(deconvolutional_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | forward_detection_layer(*(detection_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer(layer, input); |
| | | input = layer.output; |
| | | forward_connected_layer(*(connected_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | forward_crop_layer(*(crop_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | forward_cost_layer(*(cost_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | | input = layer.output; |
| | | forward_softmax_layer(*(softmax_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | forward_maxpool_layer(*(maxpool_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | forward_normalization_layer(*(normalization_layer *)net.layers[i], state); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | forward_dropout_layer(*(dropout_layer *)net.layers[i], state); |
| | | } |
| | | state.input = get_network_output_layer(net, i); |
| | | } |
| | | } |
| | | |
| | | void update_network(network net, float step, float momentum, float decay) |
| | | void update_network(network net) |
| | | { |
| | | int i; |
| | | int update_batch = net.batch*net.subdivisions; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer(layer, step, momentum, decay); |
| | | update_convolutional_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | update_deconvolutional_layer(layer, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer, step, momentum, decay); |
| | | update_connected_layer(layer, update_batch, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | |
| | | float *get_network_output_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((convolutional_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | return ((deconvolutional_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((maxpool_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DETECTION){ |
| | | return ((detection_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((softmax_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_output_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return ((connected_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == CROP){ |
| | | return ((crop_layer *)net.layers[i]) -> output; |
| | | } else if(net.types[i] == NORMALIZATION){ |
| | | return ((normalization_layer *)net.layers[i]) -> output; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float *get_network_output(network net) |
| | | { |
| | | return get_network_output_layer(net, net.n-1); |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; |
| | | return get_network_output_layer(net, i); |
| | | } |
| | | |
| | | float *get_network_delta_layer(network net, int i) |
| | |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | if(i == 0) return 0; |
| | | return get_network_delta_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta; |
| | |
| | | return 0; |
| | | } |
| | | |
| | | float get_network_cost(network net) |
| | | { |
| | | if(net.types[net.n-1] == COST){ |
| | | return ((cost_layer *)net.layers[net.n-1])->output[0]; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float *get_network_delta(network net) |
| | | { |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | float calculate_error_network(network net, float *truth) |
| | | { |
| | | float sum = 0; |
| | | float *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | int i, k = get_network_output_size(net); |
| | | for(i = 0; i < k; ++i){ |
| | | printf("%f, ", out[i]); |
| | | delta[i] = truth[i] - out[i]; |
| | | sum += delta[i]*delta[i]; |
| | | } |
| | | printf("\n"); |
| | | return sum; |
| | | } |
| | | |
| | | int get_predicted_class_network(network net) |
| | | { |
| | | float *out = get_network_output(net); |
| | |
| | | return max_index(out, k); |
| | | } |
| | | |
| | | float backward_network(network net, float *input, float *truth) |
| | | void backward_network(network net, network_state state) |
| | | { |
| | | float error = calculate_error_network(net, truth); |
| | | int i; |
| | | float *prev_input; |
| | | float *prev_delta; |
| | | float *original_input = state.input; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(i == 0){ |
| | | prev_input = input; |
| | | prev_delta = 0; |
| | | state.input = original_input; |
| | | state.delta = 0; |
| | | }else{ |
| | | prev_input = get_network_output_layer(net, i-1); |
| | | prev_delta = get_network_delta_layer(net, i-1); |
| | | state.input = get_network_output_layer(net, i-1); |
| | | state.delta = get_network_delta_layer(net, i-1); |
| | | } |
| | | |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | learn_convolutional_layer(layer); |
| | | //learn_convolutional_layer(layer); |
| | | if(i != 0) backward_convolutional_layer(layer, prev_delta); |
| | | backward_convolutional_layer(layer, state); |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | backward_deconvolutional_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_maxpool_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | backward_dropout_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | backward_detection_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | if(i != 0) backward_normalization_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_softmax_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | learn_connected_layer(layer, prev_input); |
| | | if(i != 0) backward_connected_layer(layer, prev_input, prev_delta); |
| | | backward_connected_layer(layer, state); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | backward_cost_layer(layer, state); |
| | | } |
| | | } |
| | | } |
| | | |
| | | float train_network_datum(network net, float *x, float *y) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
| | | #endif |
| | | network_state state; |
| | | state.input = x; |
| | | state.truth = y; |
| | | state.train = 1; |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | float error = get_network_cost(net); |
| | | if((net.seen/net.batch)%net.subdivisions == 0) update_network(net); |
| | | return error; |
| | | } |
| | | |
| | | float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay) |
| | | float train_network_sgd(network net, data d, int n) |
| | | { |
| | | forward_network(net, x); |
| | | //int class = get_predicted_class_network(net); |
| | | float error = backward_network(net, x, y); |
| | | update_network(net, step, momentum, decay); |
| | | //return (y[class]?1:0); |
| | | return error; |
| | | } |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | float train_network_sgd(network net, data d, int n, float step, float momentum,float decay) |
| | | { |
| | | int i; |
| | | float error = 0; |
| | | int correct = 0; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay); |
| | | float *y = d.y.vals[index]; |
| | | int class = get_predicted_class_network(net); |
| | | correct += (y[class]?1:0); |
| | | //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]); |
| | | //if((i+1)%10 == 0){ |
| | | // printf("%d: %f\n", (i+1), (float)correct/(i+1)); |
| | | //} |
| | | net.seen += batch; |
| | | get_random_batch(d, batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | | printf("Accuracy: %f\n",(float) correct/n); |
| | | return error/n; |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | float train_network_batch(network net, data d, int n, float step, float momentum,float decay) |
| | | |
| | | float train_network(network net, data d) |
| | | { |
| | | int batch = net.batch; |
| | | int n = d.X.rows / batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | int correct = 0; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | float *x = d.X.vals[index]; |
| | | float *y = d.y.vals[index]; |
| | | forward_network(net, x); |
| | | int class = get_predicted_class_network(net); |
| | | backward_network(net, x, y); |
| | | correct += (y[class]?1:0); |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | net.seen += batch; |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | | update_network(net, step, momentum, decay); |
| | | return (float)correct/n; |
| | | |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | |
| | | void train_network(network net, data d, float step, float momentum, float decay) |
| | | float train_network_batch(network net, data d, int n) |
| | | { |
| | | int i,j; |
| | | network_state state; |
| | | state.train = 1; |
| | | float sum = 0; |
| | | int batch = 2; |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < batch; ++j){ |
| | | int index = rand()%d.X.rows; |
| | | state.input = d.X.vals[index]; |
| | | state.truth = d.y.vals[index]; |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | sum += get_network_cost(net); |
| | | } |
| | | update_network(net); |
| | | } |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | void set_batch_network(network *net, int b) |
| | | { |
| | | net->batch = b; |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay); |
| | | if(i%100 == 0){ |
| | | visualize_network(net); |
| | | cvWaitKey(10); |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | }else if(net->types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer *layer = (deconvolutional_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == CONNECTED){ |
| | | connected_layer *layer = (connected_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } else if(net->types[i] == DROPOUT){ |
| | | dropout_layer *layer = (dropout_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } else if(net->types[i] == DETECTION){ |
| | | detection_layer *layer = (detection_layer *) net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == SOFTMAX){ |
| | | softmax_layer *layer = (softmax_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == COST){ |
| | | cost_layer *layer = (cost_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | else if(net->types[i] == CROP){ |
| | | crop_layer *layer = (crop_layer *)net->layers[i]; |
| | | layer->batch = b; |
| | | } |
| | | } |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | printf("Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | |
| | | int get_network_input_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.h*layer.w; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | fprintf(stderr, "Can't find input size\n"); |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | |
| | | image output = get_convolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | image output = get_deconvolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == DETECTION){ |
| | | detection_layer layer = *(detection_layer *)net.layers[i]; |
| | | return get_detection_layer_output_size(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *) net.layers[i]; |
| | | return layer.c*layer.crop_height*layer.crop_width; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | fprintf(stderr, "Can't find output size\n"); |
| | | return 0; |
| | | } |
| | | |
| | | int reset_network_size(network net, int h, int w, int c) |
| | | int resize_network(network net, int h, int w, int c) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net.layers[i]; |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | resize_convolutional_layer(layer, h, w); |
| | | image output = get_convolutional_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | } else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer *layer = (deconvolutional_layer *)net.layers[i]; |
| | | resize_deconvolutional_layer(layer, h, w); |
| | | image output = get_deconvolutional_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net.layers[i]; |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | resize_maxpool_layer(layer, h, w); |
| | | image output = get_maxpool_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else if(net.types[i] == DROPOUT){ |
| | | dropout_layer *layer = (dropout_layer *)net.layers[i]; |
| | | resize_dropout_layer(layer, h*w*c); |
| | | }else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer *layer = (normalization_layer *)net.layers[i]; |
| | | resize_normalization_layer(layer, h, w); |
| | | image output = get_normalization_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else{ |
| | | error("Cannot resize this type of layer"); |
| | | } |
| | | } |
| | | return 0; |
| | |
| | | |
| | | int get_network_output_size(network net) |
| | | { |
| | | int i = net.n-1; |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; |
| | | return get_network_output_size_layer(net, i); |
| | | } |
| | | |
| | | int get_network_input_size(network net) |
| | | { |
| | | return get_network_input_size_layer(net, 0); |
| | | } |
| | | |
| | | detection_layer *get_network_detection_layer(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == DETECTION){ |
| | | detection_layer *layer = (detection_layer *)net.layers[i]; |
| | | return layer; |
| | | } |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return get_convolutional_image(layer); |
| | | } |
| | | else if(net.types[i] == DECONVOLUTIONAL){ |
| | | deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i]; |
| | | return get_deconvolutional_image(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return get_maxpool_image(layer); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return get_normalization_image(layer); |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | return get_network_image_layer(net, i-1); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return get_crop_image(layer); |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | } |
| | | |
| | |
| | | |
| | | void visualize_network(network net) |
| | | { |
| | | image *prev = 0; |
| | | int i; |
| | | char buff[256]; |
| | | //show_image(get_network_image_layer(net, 0), "Crop"); |
| | | for(i = 0; i < net.n; ++i){ |
| | | sprintf(buff, "Layer %d", i); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | visualize_convolutional_layer(layer, buff); |
| | | prev = visualize_convolutional_layer(layer, buff, prev); |
| | | } |
| | | if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | visualize_normalization_layer(layer, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void top_predictions(network net, int k, int *index) |
| | | { |
| | | int size = get_network_output_size(net); |
| | | float *out = get_network_output(net); |
| | | top_k(out, size, k, index); |
| | | } |
| | | |
| | | |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | forward_network(net, input); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return network_predict_gpu(net, input); |
| | | #endif |
| | | |
| | | network_state state; |
| | | state.input = input; |
| | | state.truth = 0; |
| | | state.train = 0; |
| | | state.delta = 0; |
| | | forward_network(net, state); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | | } |
| | | |
| | | matrix network_predict_data(network net, data test) |
| | | matrix network_predict_data_multi(network net, data test, int n) |
| | | { |
| | | int i,j; |
| | | int i,j,b,m; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | for(i = 0; i < test.X.rows; ++i){ |
| | | float *out = network_predict(net, test.X.vals[i]); |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i][j] = out[j]; |
| | | float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | for(m = 0; m < n; ++m){ |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] += out[j+b*k]/n; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | | matrix network_predict_data(network net, data test) |
| | | { |
| | | int i,j,b; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | float *X = calloc(net.batch*test.X.cols, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] = out[j+b*k]; |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | |
| | | image m = get_maxpool_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_crop_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | output = layer.output; |
| | |
| | | } |
| | | } |
| | | |
| | | void compare_networks(network n1, network n2, data test) |
| | | { |
| | | matrix g1 = network_predict_data(n1, test); |
| | | matrix g2 = network_predict_data(n2, test); |
| | | int i; |
| | | int a,b,c,d; |
| | | a = b = c = d = 0; |
| | | for(i = 0; i < g1.rows; ++i){ |
| | | int truth = max_index(test.y.vals[i], test.y.cols); |
| | | int p1 = max_index(g1.vals[i], g1.cols); |
| | | int p2 = max_index(g2.vals[i], g2.cols); |
| | | if(p1 == truth){ |
| | | if(p2 == truth) ++d; |
| | | else ++c; |
| | | }else{ |
| | | if(p2 == truth) ++b; |
| | | else ++a; |
| | | } |
| | | } |
| | | printf("%5d %5d\n%5d %5d\n", a, b, c, d); |
| | | float num = pow((abs(b - c) - 1.), 2.); |
| | | float den = b + c; |
| | | printf("%f\n", num/den); |
| | | } |
| | | |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | float *network_accuracies(network net, data d) |
| | | { |
| | | static float acc[2]; |
| | | matrix guess = network_predict_data(net, d); |
| | | acc[0] = matrix_topk_accuracy(d.y, guess,1); |
| | | acc[1] = matrix_topk_accuracy(d.y, guess,5); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | |
| | | float network_accuracy_multi(network net, data d, int n) |
| | | { |
| | | matrix guess = network_predict_data_multi(net, d, n); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | |