| | |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, float dropout, ACTIVATION activation) |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay) |
| | | { |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | int i; |
| | | connected_layer *layer = calloc(1, sizeof(connected_layer)); |
| | | |
| | | layer->learning_rate = learning_rate; |
| | | layer->momentum = momentum; |
| | | layer->decay = decay; |
| | | |
| | | layer->inputs = inputs; |
| | | layer->outputs = outputs; |
| | | layer->batch=batch; |
| | | layer->dropout = dropout; |
| | | |
| | | layer->output = calloc(batch*outputs, sizeof(float*)); |
| | | layer->delta = calloc(batch*outputs, sizeof(float*)); |
| | |
| | | layer->weight_momentum = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 1./inputs; |
| | | //scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer->weights[i] = scale*(rand_uniform()); |
| | | layer->weights[i] = scale*(rand_uniform()-.5); |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->bias_adapt = calloc(outputs, sizeof(float)); |
| | |
| | | return layer; |
| | | } |
| | | |
| | | void update_connected_layer(connected_layer layer, float step, float momentum, float decay) |
| | | void update_connected_layer(connected_layer layer) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; |
| | | layer.bias_momentum[i] = layer.learning_rate*(layer.bias_updates[i]) + layer.momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | } |
| | | for(i = 0; i < layer.outputs*layer.inputs; ++i){ |
| | | layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i]; |
| | | layer.weight_momentum[i] = layer.learning_rate*(layer.weight_updates[i] - layer.decay*layer.weights[i]) + layer.momentum*layer.weight_momentum[i]; |
| | | layer.weights[i] += layer.weight_momentum[i]; |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(float)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float)); |
| | | } |
| | | |
| | | void forward_connected_layer(connected_layer layer, float *input, int train) |
| | | void forward_connected_layer(connected_layer layer, float *input) |
| | | { |
| | | int i; |
| | | if(!train) layer.dropout = 0; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | memcpy(layer.output+i*layer.outputs, layer.biases, layer.outputs*sizeof(float)); |
| | | } |
| | |
| | | float *b = layer.weights; |
| | | float *c = layer.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | activate_array(layer.output, layer.outputs*layer.batch, layer.activation, layer.dropout); |
| | | activate_array(layer.output, layer.outputs*layer.batch, layer.activation); |
| | | } |
| | | |
| | | void backward_connected_layer(connected_layer layer, float *input, float *delta) |
| | |
| | | int i; |
| | | for(i = 0; i < layer.outputs*layer.batch; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | layer.bias_updates[i%layer.batch] += layer.delta[i]; |
| | | layer.bias_updates[i%layer.outputs] += layer.delta[i]; |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |
| | |
| | | float *a = input; |
| | | float *b = layer.delta; |
| | | float *c = layer.weight_updates; |
| | | gemm(1,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | m = layer.batch; |
| | | k = layer.outputs; |