| | |
| | | - With OpenCV will show image or video detection in window |
| | | |
| | | ##### Pre-trained models for different cfg-files can be downloaded from (smaller -> faster & lower quality): |
| | | * `yolo.cfg` (256 MB) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights |
| | | * `yolo-tiny.cfg` (60 MB) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights |
| | | * `yolo.cfg` (256 MB COCO-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo.weights |
| | | * `yolo-voc.cfg` (256 MB VOC-model) - require 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights |
| | | * `tiny-yolo.cfg` (60 MB COCO-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo.weights |
| | | * `tiny-yolo-voc.cfg` (60 MB VOC-model) - require 1 GB GPU-RAM: http://pjreddie.com/media/files/tiny-yolo-voc.weights |
| | | |
| | | Put it near compiled: darknet.exe |
| | | |
| | | You can get cfg-files by path: `darknet/cfg/` |
| | | |
| | | ##### Examples of results: |
| | | |
| | | [](https://www.youtube.com/watch?v=VOC3huqHrss "Everything Is AWESOME") |
| | |
| | | |
| | | ##### Example of usage in cmd-files from `build\darknet\x64\`: |
| | | |
| | | * `darknet_demo_voc.cmd` - initialization with 256 MB model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4 |
| | | * `darknet_net_cam_voc.cmd` - initialization with 256 MB model, play video from network video-camera mjpeg-stream (also from you phone) |
| | | * `darknet_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and waiting for entering the name of the image file |
| | | * `darknet_demo_voc.cmd` - initialization with 256 MB VOC-model yolo-voc.weights & yolo-voc.cfg and play your video file which you must rename to: test.mp4 |
| | | * `darknet_net_cam_voc.cmd` - initialization with 256 MB VOC-model, play video from network video-camera mjpeg-stream (also from you phone) |
| | | |
| | | How to use from command line with 256 MB model: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` |
| | | ##### How to use on the command line: |
| | | * 256 MB COCO-model - image: `darknet.exe detector test data/coco.data yolo.cfg yolo.weights -i 0 -thresh 0.2` |
| | | * 256 MB VOC-model - image: `darknet.exe detector test data/voc.data yolo-voc.cfg yolo-voc.weights -i 0` |
| | | * 256 MB COCO-model - video: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights test.mp4 -i 0` |
| | | * 256 MB VOC-model - video: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` |
| | | * Alternative method 256 MB VOC-model - video: `darknet.exe yolo demo yolo-voc.cfg yolo-voc.weights test.mp4 -i 0` |
| | | * 60 MB VOC-model for video: `darknet.exe detector demo data/voc.data tiny-yolo-voc.cfg tiny-yolo-voc.weights test.mp4 -i 0` |
| | | * 256 MB COCO-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/coco.data yolo.cfg yolo.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` |
| | | * 256 MB VOC-model for net-videocam - Smart WebCam: `darknet.exe detector demo data/voc.data yolo-voc.cfg yolo-voc.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0` |
| | | |
| | | ##### For using network video-camera mjpeg-stream with any Android smartphone: |
| | | |
| | |
| | | |
| | | ### How to compile: |
| | | |
| | | 1. If you have CUDA 8.0, OpenCV 2.4.9 (C:\opencv_2.4.9) and MSVS 2015 then start MSVS, open `yolo-windows\build\darknet\darknet.sln` and do the: Build -> Build darknet |
| | | 1. If you have CUDA 8.0, OpenCV 2.4.9 (C:\opencv_2.4.9) and MSVS 2015 then start MSVS, open `build\darknet\darknet.sln` and do the: Build -> Build darknet |
| | | |
| | | 2. If you have other version of CUDA (not 8.0) then open `darknet\build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1 |
| | | 2. If you have other version of CUDA (not 8.0) then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 8.0" and change it to your CUDA-version, then do step 1 |
| | | |
| | | 3. If you have other version of OpenCV 2.4.x (not 2.4.9) then you should change pathes after `\darknet.sln` is opened |
| | | |