| | |
| | | l.weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | l.bias_updates = calloc(outputs, sizeof(float)); |
| | | |
| | | l.weights = calloc(inputs*outputs, sizeof(float)); |
| | | l.weights = calloc(outputs*inputs, sizeof(float)); |
| | | l.biases = calloc(outputs, sizeof(float)); |
| | | |
| | | |
| | | //float scale = 1./sqrt(inputs); |
| | | float scale = sqrt(2./inputs); |
| | | for(i = 0; i < inputs*outputs; ++i){ |
| | | for(i = 0; i < outputs*inputs; ++i){ |
| | | l.weights[i] = 2*scale*rand_uniform() - scale; |
| | | } |
| | | |
| | |
| | | } |
| | | |
| | | #ifdef GPU |
| | | l.weights_gpu = cuda_make_array(l.weights, inputs*outputs); |
| | | l.weights_gpu = cuda_make_array(l.weights, outputs*inputs); |
| | | l.biases_gpu = cuda_make_array(l.biases, outputs); |
| | | |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, inputs*outputs); |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, outputs*inputs); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, outputs); |
| | | |
| | | l.output_gpu = cuda_make_array(l.output, outputs*batch); |
| | |
| | | float *a = state.input; |
| | | float *b = l.weights; |
| | | float *c = l.output; |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | activate_array(l.output, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1); |
| | | } |
| | | int m = l.inputs; |
| | | int m = l.outputs; |
| | | int k = l.batch; |
| | | int n = l.outputs; |
| | | float *a = state.input; |
| | | float *b = l.delta; |
| | | int n = l.inputs; |
| | | float *a = l.delta; |
| | | float *b = state.input; |
| | | float *c = l.weight_updates; |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | |
| | | b = l.weights; |
| | | c = state.delta; |
| | | |
| | | if(c) gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | if(c) gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | |
| | | #ifdef GPU |
| | |
| | | float * a = state.input; |
| | | float * b = l.weights_gpu; |
| | | float * c = l.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | |
| | | /* |
| | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | axpy_ongpu_offset(l.outputs, 1, l.delta_gpu, i*l.outputs, 1, l.bias_updates_gpu, 0, 1); |
| | | } |
| | | int m = l.inputs; |
| | | int m = l.outputs; |
| | | int k = l.batch; |
| | | int n = l.outputs; |
| | | float * a = state.input; |
| | | float * b = l.delta_gpu; |
| | | int n = l.inputs; |
| | | float * a = l.delta_gpu; |
| | | float * b = state.input; |
| | | float * c = l.weight_updates_gpu; |
| | | gemm_ongpu(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | |
| | | b = l.weights_gpu; |
| | | c = state.delta; |
| | | |
| | | if(c) gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | if(c) gemm_ongpu(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | } |
| | | #endif |