| | |
| | | #include "mini_blas.h" |
| | | #include "gemm.h" |
| | | #include "utils.h" |
| | | #include "cuda.h" |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | |
| | | float *random_matrix(int rows, int cols) |
| | | { |
| | | int i; |
| | | float *m = calloc(rows*cols, sizeof(float)); |
| | | for(i = 0; i < rows*cols; ++i){ |
| | | m[i] = (float)rand()/RAND_MAX; |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void time_random_matrix(int TA, int TB, int m, int k, int n) |
| | | { |
| | | float *a; |
| | | if(!TA) a = random_matrix(m,k); |
| | | else a = random_matrix(k,m); |
| | | int lda = (!TA)?k:m; |
| | | float *b; |
| | | if(!TB) b = random_matrix(k,n); |
| | | else b = random_matrix(n,k); |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<10; ++i){ |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | |
| | | |
| | | #ifdef GPU |
| | | |
| | | #include "opencl.h" |
| | | #include <math.h> |
| | | |
| | | #ifdef CLBLAS |
| | | #include <clBLAS.h> |
| | | #endif |
| | | |
| | | #define STR_HELPER(x) #x |
| | | #define STR(x) STR_HELPER(x) |
| | | |
| | | #ifdef __APPLE__ |
| | | #define BLOCK 1 |
| | | #else |
| | | #define BLOCK 16 |
| | | #endif |
| | | |
| | | cl_kernel get_gemm_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_nt_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm_nt", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_tn_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm_tn", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_nn_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm_nn", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | #define TILE 64 |
| | | #define TILE_K 16 |
| | | #define WPT 8 |
| | | #define THREADS (TILE*TILE)/(WPT*WPT) |
| | | |
| | | cl_kernel get_gemm_nn_fast_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm_fast.cl", "gemm_nn_fast", "-D TILE=" STR(TILE) |
| | | " -cl-nv-verbose " |
| | | " -D TILE_K=" STR(TILE_K) |
| | | " -D WPT=" STR(WPT) |
| | | " -D THREADS=" STR(THREADS)); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float *A_gpu, int lda, |
| | | float *B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | float *C_gpu, int ldc) |
| | | { |
| | | gemm_ongpu_offset(TA, TB, M, N, K, ALPHA, A_gpu, 0, lda, B_gpu, 0, ldb, BETA, C_gpu, 0, ldc); |
| | | } |
| | | |
| | | void gemm_ongpu_fast(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | { |
| | | int a_off = 0; |
| | | int b_off = 0; |
| | | int c_off = 0; |
| | | //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K); |
| | | cl_kernel gemm_kernel = get_gemm_nn_fast_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(a_off), (void*) &a_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(b_off), (void*) &b_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(c_off), (void*) &c_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {THREADS*((N-1)/TILE + 1), (M-1)/TILE + 1}; |
| | | const size_t local_size[] = {THREADS, 1}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0); |
| | | check_error(cl); |
| | | } |
| | | |
| | | void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int a_off, int lda, |
| | | cl_mem B_gpu, int b_off, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int c_off, int ldc) |
| | | { |
| | | #ifdef CLBLAS |
| | | cl_command_queue queue = cl.queue; |
| | | cl_event event; |
| | | cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, a_off, lda,B_gpu, b_off, ldb,BETA, C_gpu, c_off, ldc,1, &queue, 0, NULL, &event); |
| | | check_error(cl); |
| | | #else |
| | | //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K); |
| | | cl_kernel gemm_kernel = get_gemm_kernel(); |
| | | if(!TA && !TB) gemm_kernel = get_gemm_nn_kernel(); |
| | | if(!TA && TB) gemm_kernel = get_gemm_nt_kernel(); |
| | | if(TA && !TB) gemm_kernel = get_gemm_tn_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(a_off), (void*) &a_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(b_off), (void*) &b_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(c_off), (void*) &c_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {ceil((float)N/BLOCK)*BLOCK, ceil((float)M/BLOCK)*BLOCK}; |
| | | const size_t local_size[] = {BLOCK, BLOCK}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0); |
| | | check_error(cl); |
| | | #endif |
| | | cublasHandle_t handle = blas_handle(); |
| | | cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), |
| | | (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc); |
| | | check_error(status); |
| | | } |
| | | |
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | cl_context context = cl.context; |
| | | cl_command_queue queue = cl.queue; |
| | | float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M)); |
| | | float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K)); |
| | | float *C_gpu = cuda_make_array(C, ldc*M); |
| | | |
| | | size_t size = sizeof(float)*(TA ? lda*K:lda*M); |
| | | cl_mem A_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, |
| | | size, A, &cl.error); |
| | | check_error(cl); |
| | | gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | |
| | | size = sizeof(float)*(TB ? ldb*N:ldb*K); |
| | | cl_mem B_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, |
| | | size, B, &cl.error); |
| | | check_error(cl); |
| | | |
| | | size = sizeof(float)*(ldc*M); |
| | | cl_mem C_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR, |
| | | size, C, &cl.error); |
| | | check_error(cl); |
| | | |
| | | // TODO |
| | | //gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | gemm_ongpu_fast(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | |
| | | clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0); |
| | | check_error(cl); |
| | | |
| | | clReleaseMemObject(A_gpu); |
| | | clReleaseMemObject(B_gpu); |
| | | clReleaseMemObject(C_gpu); |
| | | cuda_pull_array(C_gpu, C, ldc*M); |
| | | cuda_free(A_gpu); |
| | | cuda_free(B_gpu); |
| | | cuda_free(C_gpu); |
| | | } |
| | | |
| | | #include <stdio.h> |
| | |
| | | |
| | | float *c = random_matrix(m,n); |
| | | |
| | | cl_mem a_cl = cl_make_array(a, m*k); |
| | | cl_mem b_cl = cl_make_array(b, k*n); |
| | | cl_mem c_cl = cl_make_array(c, m*n); |
| | | float *a_cl = cuda_make_array(a, m*k); |
| | | float *b_cl = cuda_make_array(b, k*n); |
| | | float *c_cl = cuda_make_array(c, m*n); |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<iter; ++i){ |
| | | gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n); |
| | | cudaThreadSynchronize(); |
| | | } |
| | | double flop = ((double)m)*n*(2.*k + 2.)*iter; |
| | | double gflop = flop/pow(10., 9); |
| | | end = clock(); |
| | | double seconds = sec(end-start); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds); |
| | | clReleaseMemObject(a_cl); |
| | | clReleaseMemObject(b_cl); |
| | | clReleaseMemObject(c_cl); |
| | | cuda_free(a_cl); |
| | | cuda_free(b_cl); |
| | | cuda_free(c_cl); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | void time_ongpu_fast(int TA, int TB, int m, int k, int n) |
| | | { |
| | | int iter = 10; |
| | | float *a = random_matrix(m,k); |
| | | float *b = random_matrix(k,n); |
| | | |
| | | int lda = (!TA)?k:m; |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | |
| | | cl_mem a_cl = cl_make_array(a, m*k); |
| | | cl_mem b_cl = cl_make_array(b, k*n); |
| | | cl_mem c_cl = cl_make_array(c, m*n); |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<iter; ++i){ |
| | | gemm_ongpu_fast(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n); |
| | | } |
| | | double flop = ((double)m)*n*(2.*k + 2.)*iter; |
| | | double gflop = flop/pow(10., 9); |
| | | end = clock(); |
| | | double seconds = sec(end-start); |
| | | printf("Fast Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds); |
| | | clReleaseMemObject(a_cl); |
| | | clReleaseMemObject(b_cl); |
| | | clReleaseMemObject(c_cl); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | void test_gpu_accuracy(int TA, int TB, int m, int k, int n) |
| | | { |
| | |
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n); |
| | | //printf("GPU\n"); |
| | | //pm(m, n, c_gpu); |
| | | |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | //printf("\n\nCPU\n"); |
| | | //pm(m, n, c); |
| | |
| | | free(c_gpu); |
| | | } |
| | | |
| | | void test_gpu_blas() |
| | | int test_gpu_blas() |
| | | { |
| | | /* |
| | | /* |
| | | test_gpu_accuracy(0,0,10,576,75); |
| | | |
| | | test_gpu_accuracy(0,0,17,10,10); |
| | |
| | | test_gpu_accuracy(1,0,1000,10,100); |
| | | test_gpu_accuracy(0,1,1000,10,100); |
| | | test_gpu_accuracy(1,1,1000,10,100); |
| | | */ |
| | | |
| | | test_gpu_accuracy(0,0,128,128,128); |
| | | test_gpu_accuracy(0,0,10,10,10); |
| | | |
| | | /* |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu_fast(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu_fast(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu_fast(0,0,64,2916,363); |
| | | time_ongpu(0,0,192,729,1600); |
| | | time_ongpu_fast(0,0,192,729,1600); |
| | | time_ongpu(0,0,384,196,1728); |
| | | time_ongpu_fast(0,0,384,196,1728); |
| | | time_ongpu(0,0,256,196,3456); |
| | | time_ongpu_fast(0,0,256,196,3456); |
| | | time_ongpu(0,0,256,196,2304); |
| | | time_ongpu_fast(0,0,256,196,2304); |
| | | time_ongpu(0,0,128,4096,12544); |
| | | time_ongpu_fast(0,0,128,4096,12544); |
| | | time_ongpu(0,0,128,4096,4096); |
| | | time_ongpu_fast(0,0,128,4096,4096); |
| | | */ |
| | | // time_ongpu(1,0,2304,196,256); |
| | | // time_ongpu_fast(1,0,2304,196,256); |
| | | // time_ongpu(0,1,256,2304,196); |
| | | // time_ongpu_fast(0,1,256,2304,196); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,576,12544); |
| | | time_ongpu(0,0,256,2304,784); |
| | | time_ongpu(1,1,2304,256,784); |
| | | time_ongpu(0,0,512,4608,196); |
| | | time_ongpu(1,1,4608,512,196); |
| | | |
| | | time_ongpu(0,0,2048,2048,2048); |
| | | time_ongpu_fast(0,0,2048,2048,2048); |
| | | time_ongpu(0,0,2048,2048,2048); |
| | | time_ongpu_fast(0,0,2048,2048,2048); |
| | | time_ongpu(0,0,2048,2048,2048); |
| | | time_ongpu_fast(0,0,2048,2048,2048); |
| | | |
| | | /* |
| | | test_gpu_accuracy(0,0,131,4093,1199); |
| | | test_gpu_accuracy(0,1,131,4093,1199); |
| | | test_gpu_accuracy(1,0,131,4093,1199); |
| | | test_gpu_accuracy(1,1,131,4093,1199); |
| | | */ |
| | | /* |
| | | |
| | | time_ongpu(0,0,1024,1024,1024); |
| | | time_ongpu(0,1,1024,1024,1024); |
| | | time_ongpu(1,0,1024,1024,1024); |
| | | time_ongpu(1,1,1024,1024,1024); |
| | | |
| | | time_ongpu(0,0,128,4096,1200); |
| | | time_ongpu(0,1,128,4096,1200); |
| | | time_ongpu(1,0,128,4096,1200); |
| | | time_ongpu(1,1,128,4096,1200); |
| | | */ |
| | | |
| | | /* |
| | | time_gpu_random_matrix(0,0,1000,1000,100); |
| | | time_random_matrix(0,0,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(0,1,1000,1000,100); |
| | | time_random_matrix(0,1,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(1,0,1000,1000,100); |
| | | time_random_matrix(1,0,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(1,1,1000,1000,100); |
| | | time_random_matrix(1,1,1000,1000,100); |
| | | */ |
| | | |
| | | return 0; |
| | | } |
| | | #endif |
| | | |