| | |
| | | #include "avgpool_layer.h" |
| | | #include "local_layer.h" |
| | | #include "route_layer.h" |
| | | #include "shortcut_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "utils.h" |
| | |
| | | int is_softmax(section *s); |
| | | int is_normalization(section *s); |
| | | int is_crop(section *s); |
| | | int is_shortcut(section *s); |
| | | int is_cost(section *s); |
| | | int is_detection(section *s); |
| | | int is_route(section *s); |
| | |
| | | int h; |
| | | int w; |
| | | int c; |
| | | int index; |
| | | } size_params; |
| | | |
| | | deconvolutional_layer parse_deconvolutional(list *options, size_params params) |
| | |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize); |
| | | layer.flipped = option_find_int_quiet(options, "flipped", 0); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_shortcut(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "from"); |
| | | int index = atoi(l); |
| | | if(index < 0) index = params.index + index; |
| | | |
| | | int batch = params.batch; |
| | | layer from = net.layers[index]; |
| | | |
| | | layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); |
| | | return s; |
| | | } |
| | | |
| | | |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "layers"); |
| | |
| | | for(i = 0; i < n; ++i){ |
| | | int index = atoi(l); |
| | | l = strchr(l, ',')+1; |
| | | if(index < 0) index = params.index + index; |
| | | layers[i] = index; |
| | | sizes[i] = net.layers[index].outputs; |
| | | } |
| | |
| | | int count = 0; |
| | | free_section(s); |
| | | while(n){ |
| | | params.index = count; |
| | | fprintf(stderr, "%d: ", count); |
| | | s = (section *)n->val; |
| | | options = s->options; |
| | |
| | | l = parse_avgpool(options, params); |
| | | }else if(is_route(s)){ |
| | | l = parse_route(options, params, net); |
| | | }else if(is_shortcut(s)){ |
| | | l = parse_shortcut(options, params, net); |
| | | }else if(is_dropout(s)){ |
| | | l = parse_dropout(options, params); |
| | | l.output = net.layers[count-1].output; |
| | |
| | | net.layers[count] = l; |
| | | free_section(s); |
| | | n = n->next; |
| | | ++count; |
| | | if(n){ |
| | | params.h = l.out_h; |
| | | params.w = l.out_w; |
| | | params.c = l.out_c; |
| | | params.inputs = l.outputs; |
| | | } |
| | | ++count; |
| | | } |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | |
| | | return net; |
| | | } |
| | | |
| | | int is_shortcut(section *s) |
| | | { |
| | | return (strcmp(s->type, "[shortcut]")==0); |
| | | } |
| | | int is_crop(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crop]")==0); |
| | |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | int major = 0; |
| | | int minor = 1; |
| | | int revision = 0; |
| | | fwrite(&major, sizeof(int), 1, fp); |
| | | fwrite(&minor, sizeof(int), 1, fp); |
| | | fwrite(&revision, sizeof(int), 1, fp); |
| | | fwrite(net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | |
| | | save_weights_upto(net, filename, net.n); |
| | | } |
| | | |
| | | void transpose_matrix(float *a, int rows, int cols) |
| | | { |
| | | float *transpose = calloc(rows*cols, sizeof(float)); |
| | | int x, y; |
| | | for(x = 0; x < rows; ++x){ |
| | | for(y = 0; y < cols; ++y){ |
| | | transpose[y*rows + x] = a[x*cols + y]; |
| | | } |
| | | } |
| | | memcpy(a, transpose, rows*cols*sizeof(float)); |
| | | free(transpose); |
| | | } |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s...", filename); |
| | |
| | | FILE *fp = fopen(filename, "r"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | float garbage; |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | int major; |
| | | int minor; |
| | | int revision; |
| | | fread(&major, sizeof(int), 1, fp); |
| | | fread(&minor, sizeof(int), 1, fp); |
| | | fread(&revision, sizeof(int), 1, fp); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | if (l.flipped) { |
| | | transpose_matrix(l.filters, l.c*l.size*l.size, l.n); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | |
| | | if(l.type == CONNECTED){ |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | if(major > 1000 || minor > 1000){ |
| | | transpose_matrix(l.weights, l.inputs, l.outputs); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(l); |