| | |
| | | return layer; |
| | | } |
| | | |
| | | void forward_detection_layer(const detection_layer layer, float *in, float *truth) |
| | | |
| | | void forward_detection_layer(const detection_layer layer, network_state state) |
| | | { |
| | | int in_i = 0; |
| | | int out_i = 0; |
| | | int locations = get_detection_layer_locations(layer); |
| | | int i,j; |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | int mask = (!truth || !truth[out_i + layer.classes - 1]); |
| | | int mask = (!state.truth || state.truth[out_i + layer.classes + 2]); |
| | | float scale = 1; |
| | | if(layer.rescore) scale = in[in_i++]; |
| | | if(layer.rescore) scale = state.input[in_i++]; |
| | | for(j = 0; j < layer.classes; ++j){ |
| | | layer.output[out_i++] = scale*in[in_i++]; |
| | | layer.output[out_i++] = scale*state.input[in_i++]; |
| | | } |
| | | softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes); |
| | | activate_array(in+in_i, layer.coords, LOGISTIC); |
| | | if(!layer.rescore){ |
| | | softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes); |
| | | activate_array(state.input+in_i, layer.coords, LOGISTIC); |
| | | } |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | layer.output[out_i++] = mask*in[in_i++]; |
| | | layer.output[out_i++] = mask*state.input[in_i++]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer layer, float *in, float *delta) |
| | | void dark_zone(detection_layer layer, int index, network_state state) |
| | | { |
| | | int size = layer.classes+layer.rescore+layer.coords; |
| | | int location = (index%(7*7*size)) / size ; |
| | | int r = location / 7; |
| | | int c = location % 7; |
| | | int class = index%size; |
| | | if(layer.rescore) --class; |
| | | int dr, dc; |
| | | for(dr = -1; dr <= 1; ++dr){ |
| | | for(dc = -1; dc <= 1; ++dc){ |
| | | if(!(dr || dc)) continue; |
| | | if((r + dr) > 6 || (r + dr) < 0) continue; |
| | | if((c + dc) > 6 || (c + dc) < 0) continue; |
| | | int di = (dr*7 + dc) * size; |
| | | if(state.truth[index+di]) continue; |
| | | layer.delta[index + di] = 0; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backward_detection_layer(const detection_layer layer, network_state state) |
| | | { |
| | | int locations = get_detection_layer_locations(layer); |
| | | int i,j; |
| | |
| | | for(i = 0; i < layer.batch*locations; ++i){ |
| | | float scale = 1; |
| | | float latent_delta = 0; |
| | | if(layer.rescore) scale = in[in_i++]; |
| | | if(layer.rescore) scale = state.input[in_i++]; |
| | | if(!layer.rescore){ |
| | | for(j = 0; j < layer.classes-1; ++j){ |
| | | if(state.truth[out_i + j]) dark_zone(layer, out_i+j, state); |
| | | } |
| | | } |
| | | for(j = 0; j < layer.classes; ++j){ |
| | | latent_delta += in[in_i]*layer.delta[out_i]; |
| | | delta[in_i++] = scale*layer.delta[out_i++]; |
| | | latent_delta += state.input[in_i]*layer.delta[out_i]; |
| | | state.delta[in_i++] = scale*layer.delta[out_i++]; |
| | | } |
| | | |
| | | gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); |
| | | |
| | | if (!layer.rescore) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i); |
| | | for(j = 0; j < layer.coords; ++j){ |
| | | delta[in_i++] = layer.delta[out_i++]; |
| | | state.delta[in_i++] = layer.delta[out_i++]; |
| | | } |
| | | if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta; |
| | | if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth) |
| | | void forward_detection_layer_gpu(const detection_layer layer, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(truth){ |
| | | if(state.truth){ |
| | | truth_cpu = calloc(layer.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(truth, truth_cpu, layer.batch*outputs); |
| | | cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); |
| | | } |
| | | cuda_pull_array(in, in_cpu, layer.batch*layer.inputs); |
| | | forward_detection_layer(layer, in_cpu, truth_cpu); |
| | | cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.input = in_cpu; |
| | | forward_detection_layer(layer, cpu_state); |
| | | cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs); |
| | | free(in_cpu); |
| | | if(truth_cpu) free(truth_cpu); |
| | | free(cpu_state.input); |
| | | if(cpu_state.truth) free(cpu_state.truth); |
| | | } |
| | | |
| | | void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta) |
| | | void backward_detection_layer_gpu(detection_layer layer, network_state state) |
| | | { |
| | | int outputs = get_detection_layer_output_size(layer); |
| | | |
| | | float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float)); |
| | | float *truth_cpu = 0; |
| | | if(state.truth){ |
| | | truth_cpu = calloc(layer.batch*outputs, sizeof(float)); |
| | | cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs); |
| | | } |
| | | network_state cpu_state; |
| | | cpu_state.train = state.train; |
| | | cpu_state.input = in_cpu; |
| | | cpu_state.truth = truth_cpu; |
| | | cpu_state.delta = delta_cpu; |
| | | |
| | | cuda_pull_array(in, in_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs); |
| | | cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs); |
| | | backward_detection_layer(layer, in_cpu, delta_cpu); |
| | | cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs); |
| | | backward_detection_layer(layer, cpu_state); |
| | | cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs); |
| | | |
| | | free(in_cpu); |
| | | free(delta_cpu); |