Edmond Yoo
2018-10-12 dea64611730c84a59c711c61f7f80948f82bcd31
opencv_dnn.py
@@ -3,6 +3,7 @@
import pandas as pd
import imagehash as ih
import os
import ast
import sys
import math
import random
@@ -17,11 +18,27 @@
card_height = 440
def calc_image_hashes(card_pool, save_to=None):
    card_pool['art_hash'] = np.NaN
def calc_image_hashes(card_pool, save_to=None, hash_size=32, highfreq_factor=4):
    new_pool = pd.DataFrame(columns=list(card_pool.columns.values))
    new_pool['card_hash'] = np.NaN
    new_pool['art_hash'] = np.NaN
    for ind, card_info in card_pool.iterrows():
        if ind % 100 == 0:
            print(ind)
        card_names = []
        if card_info['layout'] in ['transform', 'double_faced_token']:
            if isinstance(card_info['card_faces'], str):  # For some reason, dict isn't being parsed in the previous step
                card_faces = ast.literal_eval(card_info['card_faces'])
            else:
                card_faces = card_info['card_faces']
            for i in range(len(card_faces)):
                card_names.append(card_faces[i]['name'])
        else:  # if card_info['layout'] == 'normal':
            card_names.append(card_info['name'])
        for card_name in card_names:
            card_info['name'] = card_name
        img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
                                                     card_info['collector_number'],
                                                     fetch_data.get_valid_filename(card_info['name']))
@@ -32,18 +49,22 @@
            card_img = cv2.imread(img_name)
        if card_img is None:
            print('WARNING: card %s is not found!' % img_name)
        img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
        art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
        card_pool.at[ind, 'art_hash'] = art_hash
            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
            #art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
            #card_pool.at[ind, 'art_hash'] = art_hash
        img_card = Image.fromarray(card_img)
        card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
        card_pool.at[ind, 'card_hash'] = card_hash
        card_pool = card_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
            card_hash = ih.phash(img_card, hash_size=hash_size, highfreq_factor=highfreq_factor)
            #card_pool.at[ind, 'card_hash'] = card_hash
            card_info['card_hash'] = card_hash
            #print(new_pool.index.max())
            new_pool.loc[0 if new_pool.empty else new_pool.index.max() + 1] = card_info
    new_pool = new_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
                               'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
                               'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
    if save_to is not None:
        card_pool.to_pickle(save_to)
    return card_pool
        new_pool.to_pickle(save_to)
    return new_pool
# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
@@ -282,7 +303,9 @@
def detect_frame(net, classes, img, card_pool, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), out_path=None, display=True,
                 debug=False):
    img_copy = img.copy()
    start_1 = time.time()
    elapsed = []
    '''
    # Create a 4D blob from a frame.
    blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
@@ -291,7 +314,9 @@
    # Runs the forward pass to get output of the output layers
    outs = net.forward(get_outputs_names(net))
    elapsed.append((time.time() - start_1) * 1000)
    start_2 = time.time()
    img_result = img.copy()
    # Remove the bounding boxes with low confidence
@@ -300,7 +325,10 @@
        class_id, confidence, box = obj
        left, top, width, height = box
        draw_pred(img_result, class_id, classes, confidence, left, top, left + width, top + height)
    elapsed.append((time.time() - start_2) * 1000)
    '''
    img_result = img.copy()
    obj_list = []
    # Put efficiency information. The function getPerfProfile returns the
    # overall time for inference(t) and the timings for each of the layers(in layersTimes)
    #if display:
@@ -315,6 +343,7 @@
    '''
    det_cards = []
    for i in range(len(obj_list)):
        start_3 = time.time()
        _, _, box = obj_list[i]
        left, top, width, height = box
        # Just in case the bounding box trimmed the edge of the cards, give it a bit of offset around the edge
@@ -325,11 +354,14 @@
        y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
        img_snip = img[y1:y2, x1:x2]
        cnts = find_card(img_snip)
        elapsed.append((time.time() - start_3) * 1000)
        if len(cnts) > 0:
            start_4 = time.time()
            cnt = cnts[0]  # The largest (rectangular) contour
            pts = np.float32([p[0] for p in cnt])
            img_warp = four_point_transform(img_snip, pts)
            img_warp = cv2.resize(img_warp, (card_width, card_height))
            elapsed.append((time.time() - start_4) * 1000)
            '''
            img_art = img_warp[47:249, 22:294]
            img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
@@ -338,14 +370,16 @@
            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
            card_name = min_cards.iloc[0]['name']
            '''
            start_5 = time.time()
            img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
            card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
            card_pool['hash_diff'] = card_pool['card_hash'] - card_hash
            card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4).hash.flatten()
            card_pool['hash_diff'] = card_pool['card_hash'].apply(lambda x: np.count_nonzero(x != card_hash))
            min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
            card_name = min_cards.iloc[0]['name']
            card_set = min_cards.iloc[0]['set']
            det_cards.append((card_name, card_set))
            hash_diff = min_cards.iloc[0]['hash_diff']
            elapsed.append((time.time() - start_5) * 1000)
            # Display the result
            if debug:
@@ -360,7 +394,8 @@
    if out_path is not None:
        cv2.imwrite(out_path, img_result.astype(np.uint8))
    elapsed = [(time.time() - start_1) * 1000] + elapsed
    #print(', '.join(['%.2f' % t for t in elapsed]))
    return obj_list, det_cards, img_result
@@ -384,10 +419,11 @@
                cv2.waitKey(0)
                break
            # Use the YOLO model to identify each cards annonymously
            start_yolo = time.time()
            obj_list, det_cards, img_result = detect_frame(net, classes, frame, card_pool, thresh_conf=thresh_conf,
                                                           thresh_nms=thresh_nms, in_dim=in_dim, out_path=None,
                                                           display=display, debug=debug)
            elapsed_yolo = (time.time() - start_yolo) * 1000
            # If the card was already detected in the previous frame, append 1 to the list
            # If the card previously detected was not found in this trame, append 0 to the list
            # If the card wasn't previously detected, make a new list and add 1 to it
@@ -413,21 +449,24 @@
                    exist_cards[key] = [1]
            for key in gone:
                exist_cards.pop(key)
            start_graph = time.time()
            img_graph = draw_card_graph(exist_cards, card_pool, f_len)
            elapsed_graph = (time.time() - start_graph) * 1000
            if debug:
                max_num_obj = max(max_num_obj, len(obj_list))
                for i in range(len(obj_list), max_num_obj):
                    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            start_display = time.time()
            img_save = np.zeros((height, width, 3), dtype=np.uint8)
            img_save[0:img_result.shape[0], 0:img_result.shape[1]] = img_result
            img_save[0:img_graph.shape[0], img_result.shape[1]:img_result.shape[1] + img_graph.shape[1]] = img_graph
            if display:
                cv2.imshow('result', img_save)
            elapsed_display = (time.time() - start_display) * 1000
            elapsed_ms = (time.time() - start_time) * 1000
            print('Elapsed time: %.2f ms' % elapsed_ms)
            #print('Elapsed time: %.2f ms, %.2f, %.2f, %.2f' % (elapsed_ms, elapsed_yolo, elapsed_graph, elapsed_display))
            if out_path is not None:
                vid_writer.write(img_save.astype(np.uint8))
            cv2.waitKey(1)
@@ -469,18 +508,28 @@
        df = fetch_data.load_all_cards_text(csv_name)
        df_list.append(df)
        #print(df)
    card_pool = pd.concat(df_list)
    card_pool = pd.concat(df_list, sort=True)
    card_pool.reset_index(drop=True, inplace=True)
    card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
    card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
    for hash_size in [8, 16, 32, 64]:
        for highfreq_factor in [4, 8, 16, 32]:
            pck_name = 'card_pool_%d_%d.pck' % (hash_size, highfreq_factor)
            if not os.path.exists(pck_name):
                print(pck_name)
                calc_image_hashes(card_pool, save_to=pck_name, hash_size=hash_size, highfreq_factor=highfreq_factor)
    '''
    # csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
    # card_pool = fetch_data.load_all_cards_text(csv_name)
    # card_pool = calc_image_hashes(card_pool)
    card_pool = pd.read_pickle('card_pool.pck')
    card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')]
    #card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
    #return
    card_pool = pd.read_pickle('card_pool_32_4.pck')
    #card_pool = card_pool[(card_pool['set'] == 'rtr') | (card_pool['set'] == 'isd')]
    card_pool = card_pool[['name', 'set', 'collector_number', 'card_hash']]
    # ImageHash is basically just one numpy.ndarray with (hash_size)^2 number of bits. pre-emptively flattening it
    # significantly increases speed for subtracting hashes in the future.
    card_pool['card_hash'] = card_pool['card_hash'].apply(lambda x: x.hash.flatten())
    thresh_conf = 0.01
    thresh_nms = 0.8