| | |
| | | #include "data.h" |
| | | #include "list.h" |
| | | #include "utils.h" |
| | | #include "image.h" |
| | | |
| | | #include <stdio.h> |
| | | #include <stdlib.h> |
| | | #include <string.h> |
| | | |
| | | batch make_batch(int n, int k) |
| | | { |
| | | batch b; |
| | | b.n = n; |
| | | if(k < 3) k = 1; |
| | | b.images = calloc(n, sizeof(image)); |
| | | b.truth = calloc(n, sizeof(double *)); |
| | | int i; |
| | | for(i =0 ; i < n; ++i) b.truth[i] = calloc(k, sizeof(double)); |
| | | return b; |
| | | } |
| | | |
| | | list *get_paths(char *filename) |
| | | { |
| | | char *path; |
| | | FILE *file = fopen(filename, "r"); |
| | | if(!file) file_error(filename); |
| | | list *lines = make_list(); |
| | | while((path=fgetl(file))){ |
| | | list_insert(lines, path); |
| | |
| | | return lines; |
| | | } |
| | | |
| | | int get_truth(char *path) |
| | | void fill_truth_detection(char *path, float *truth, int height, int width, int num_height, int num_width, float scale) |
| | | { |
| | | if(strstr(path, "dog")) return 1; |
| | | return 0; |
| | | } |
| | | |
| | | batch load_list(list *paths) |
| | | { |
| | | char *path; |
| | | batch data = make_batch(paths->size, 2); |
| | | node *n = paths->front; |
| | | int i; |
| | | for(i = 0; i < data.n; ++i){ |
| | | path = (char *)n->val; |
| | | data.images[i] = load_image(path); |
| | | data.truth[i][0] = get_truth(path); |
| | | n = n->next; |
| | | int box_height = height/num_height; |
| | | int box_width = width/num_width; |
| | | char *labelpath = find_replace(path, "imgs", "det"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | FILE *file = fopen(labelpath, "r"); |
| | | int x, y, h, w; |
| | | while(fscanf(file, "%d %d %d %d", &x, &y, &w, &h) == 4){ |
| | | int i = x/box_width; |
| | | int j = y/box_height; |
| | | float dh = (float)(x%box_width)/box_height; |
| | | float dw = (float)(y%box_width)/box_width; |
| | | float sh = h/scale; |
| | | float sw = w/scale; |
| | | int index = (i+j*num_width)*5; |
| | | truth[index++] = 1; |
| | | truth[index++] = dh; |
| | | truth[index++] = dw; |
| | | truth[index++] = sh; |
| | | truth[index++] = sw; |
| | | } |
| | | return data; |
| | | } |
| | | |
| | | batch get_all_data(char *filename) |
| | | { |
| | | list *paths = get_paths(filename); |
| | | batch b = load_list(paths); |
| | | free_list_contents(paths); |
| | | free_list(paths); |
| | | return b; |
| | | } |
| | | |
| | | void free_batch(batch b) |
| | | void fill_truth(char *path, char **labels, int k, float *truth) |
| | | { |
| | | int i; |
| | | for(i = 0; i < b.n; ++i){ |
| | | free_image(b.images[i]); |
| | | free(b.truth[i]); |
| | | memset(truth, 0, k*sizeof(float)); |
| | | for(i = 0; i < k; ++i){ |
| | | if(strstr(path, labels[i])){ |
| | | truth[i] = 1; |
| | | } |
| | | } |
| | | free(b.images); |
| | | free(b.truth); |
| | | } |
| | | |
| | | batch get_batch(char *filename, int curr, int total) |
| | | matrix load_image_paths(char **paths, int n, int h, int w) |
| | | { |
| | | list *plist = get_paths(filename); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int i; |
| | | int start = curr*plist->size/total; |
| | | int end = (curr+1)*plist->size/total; |
| | | batch b = make_batch(end-start, 2); |
| | | for(i = start; i < end; ++i){ |
| | | b.images[i-start] = load_image(paths[i]); |
| | | b.truth[i-start][0] = get_truth(paths[i]); |
| | | } |
| | | free_list_contents(plist); |
| | | free_list(plist); |
| | | free(paths); |
| | | return b; |
| | | } |
| | | matrix X; |
| | | X.rows = n; |
| | | X.vals = calloc(X.rows, sizeof(float*)); |
| | | X.cols = 0; |
| | | |
| | | batch random_batch(char *filename, int n) |
| | | { |
| | | list *plist = get_paths(filename); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int i; |
| | | batch b = make_batch(n, 2); |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%plist->size; |
| | | b.images[i] = load_image(paths[index]); |
| | | normalize_image(b.images[i]); |
| | | b.truth[i][0] = get_truth(paths[index]); |
| | | image im = load_image_color(paths[i], h, w); |
| | | X.vals[i] = im.data; |
| | | X.cols = im.h*im.w*im.c; |
| | | } |
| | | return X; |
| | | } |
| | | |
| | | matrix load_labels_paths(char **paths, int n, char **labels, int k) |
| | | { |
| | | matrix y = make_matrix(n, k); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | fill_truth(paths[i], labels, k, y.vals[i]); |
| | | } |
| | | return y; |
| | | } |
| | | |
| | | matrix load_labels_detection(char **paths, int n, int height, int width, int num_height, int num_width, float scale) |
| | | { |
| | | int k = num_height*num_width*5; |
| | | matrix y = make_matrix(n, k); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | fill_truth_detection(paths[i], y.vals[i], height, width, num_height, num_width, scale); |
| | | } |
| | | return y; |
| | | } |
| | | |
| | | data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w) |
| | | { |
| | | list *plist = get_paths(filename); |
| | | char **paths = (char **)list_to_array(plist); |
| | | int n = plist->size; |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, h, w); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | free_list_contents(plist); |
| | | free_list(plist); |
| | | free(paths); |
| | | return b; |
| | | return d; |
| | | } |
| | | |
| | | char **get_labels(char *filename) |
| | | { |
| | | list *plist = get_paths(filename); |
| | | char **labels = (char **)list_to_array(plist); |
| | | free_list(plist); |
| | | return labels; |
| | | } |
| | | |
| | | void free_data(data d) |
| | | { |
| | | if(!d.shallow){ |
| | | free_matrix(d.X); |
| | | free_matrix(d.y); |
| | | }else{ |
| | | free(d.X.vals); |
| | | free(d.y.vals); |
| | | } |
| | | } |
| | | |
| | | data load_data_detection_random(int n, char **paths, int m, char **labels, int h, int w, int nh, int nw, float scale) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(random_paths, n, h, w); |
| | | d.y = load_labels_detection(random_paths, n, h, w, nh, nw, scale); |
| | | free(random_paths); |
| | | return d; |
| | | } |
| | | |
| | | data load_data(char **paths, int n, char **labels, int k, int h, int w) |
| | | { |
| | | data d; |
| | | d.shallow = 0; |
| | | d.X = load_image_paths(paths, n, h, w); |
| | | d.y = load_labels_paths(paths, n, labels, k); |
| | | return d; |
| | | } |
| | | |
| | | data load_data_random(int n, char **paths, int m, char **labels, int k, int h, int w) |
| | | { |
| | | char **random_paths = calloc(n, sizeof(char*)); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%m; |
| | | random_paths[i] = paths[index]; |
| | | if(i == 0) printf("%s\n", paths[index]); |
| | | } |
| | | data d = load_data(random_paths, n, labels, k, h, w); |
| | | free(random_paths); |
| | | return d; |
| | | } |
| | | |
| | | data load_categorical_data_csv(char *filename, int target, int k) |
| | | { |
| | | data d; |
| | | d.shallow = 0; |
| | | matrix X = csv_to_matrix(filename); |
| | | float *truth_1d = pop_column(&X, target); |
| | | float **truth = one_hot_encode(truth_1d, X.rows, k); |
| | | matrix y; |
| | | y.rows = X.rows; |
| | | y.cols = k; |
| | | y.vals = truth; |
| | | d.X = X; |
| | | d.y = y; |
| | | free(truth_1d); |
| | | return d; |
| | | } |
| | | |
| | | data load_cifar10_data(char *filename) |
| | | { |
| | | data d; |
| | | d.shallow = 0; |
| | | long i,j; |
| | | matrix X = make_matrix(10000, 3072); |
| | | matrix y = make_matrix(10000, 10); |
| | | d.X = X; |
| | | d.y = y; |
| | | |
| | | FILE *fp = fopen(filename, "rb"); |
| | | if(!fp) file_error(filename); |
| | | for(i = 0; i < 10000; ++i){ |
| | | unsigned char bytes[3073]; |
| | | fread(bytes, 1, 3073, fp); |
| | | int class = bytes[0]; |
| | | y.vals[i][class] = 1; |
| | | for(j = 0; j < X.cols; ++j){ |
| | | X.vals[i][j] = (double)bytes[j+1]; |
| | | } |
| | | } |
| | | translate_data_rows(d, -144); |
| | | scale_data_rows(d, 1./128); |
| | | //normalize_data_rows(d); |
| | | fclose(fp); |
| | | return d; |
| | | } |
| | | |
| | | void get_random_batch(data d, int n, float *X, float *y) |
| | | { |
| | | int j; |
| | | for(j = 0; j < n; ++j){ |
| | | int index = rand()%d.X.rows; |
| | | memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
| | | memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
| | | } |
| | | } |
| | | |
| | | void get_next_batch(data d, int n, int offset, float *X, float *y) |
| | | { |
| | | int j; |
| | | for(j = 0; j < n; ++j){ |
| | | int index = offset + j; |
| | | memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
| | | memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
| | | } |
| | | } |
| | | |
| | | |
| | | data load_all_cifar10() |
| | | { |
| | | data d; |
| | | d.shallow = 0; |
| | | int i,j,b; |
| | | matrix X = make_matrix(50000, 3072); |
| | | matrix y = make_matrix(50000, 10); |
| | | d.X = X; |
| | | d.y = y; |
| | | |
| | | |
| | | for(b = 0; b < 5; ++b){ |
| | | char buff[256]; |
| | | sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1); |
| | | FILE *fp = fopen(buff, "rb"); |
| | | if(!fp) file_error(buff); |
| | | for(i = 0; i < 10000; ++i){ |
| | | unsigned char bytes[3073]; |
| | | fread(bytes, 1, 3073, fp); |
| | | int class = bytes[0]; |
| | | y.vals[i+b*10000][class] = 1; |
| | | for(j = 0; j < X.cols; ++j){ |
| | | X.vals[i+b*10000][j] = (double)bytes[j+1]; |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | //normalize_data_rows(d); |
| | | translate_data_rows(d, -144); |
| | | scale_data_rows(d, 1./128); |
| | | return d; |
| | | } |
| | | |
| | | void randomize_data(data d) |
| | | { |
| | | int i; |
| | | for(i = d.X.rows-1; i > 0; --i){ |
| | | int index = rand()%i; |
| | | float *swap = d.X.vals[index]; |
| | | d.X.vals[index] = d.X.vals[i]; |
| | | d.X.vals[i] = swap; |
| | | |
| | | swap = d.y.vals[index]; |
| | | d.y.vals[index] = d.y.vals[i]; |
| | | d.y.vals[i] = swap; |
| | | } |
| | | } |
| | | |
| | | void scale_data_rows(data d, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | scale_array(d.X.vals[i], d.X.cols, s); |
| | | } |
| | | } |
| | | |
| | | void translate_data_rows(data d, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | translate_array(d.X.vals[i], d.X.cols, s); |
| | | } |
| | | } |
| | | |
| | | void normalize_data_rows(data d) |
| | | { |
| | | int i; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | normalize_array(d.X.vals[i], d.X.cols); |
| | | } |
| | | } |
| | | |
| | | data *split_data(data d, int part, int total) |
| | | { |
| | | data *split = calloc(2, sizeof(data)); |
| | | int i; |
| | | int start = part*d.X.rows/total; |
| | | int end = (part+1)*d.X.rows/total; |
| | | data train; |
| | | data test; |
| | | train.shallow = test.shallow = 1; |
| | | |
| | | test.X.rows = test.y.rows = end-start; |
| | | train.X.rows = train.y.rows = d.X.rows - (end-start); |
| | | train.X.cols = test.X.cols = d.X.cols; |
| | | train.y.cols = test.y.cols = d.y.cols; |
| | | |
| | | train.X.vals = calloc(train.X.rows, sizeof(float*)); |
| | | test.X.vals = calloc(test.X.rows, sizeof(float*)); |
| | | train.y.vals = calloc(train.y.rows, sizeof(float*)); |
| | | test.y.vals = calloc(test.y.rows, sizeof(float*)); |
| | | |
| | | for(i = 0; i < start; ++i){ |
| | | train.X.vals[i] = d.X.vals[i]; |
| | | train.y.vals[i] = d.y.vals[i]; |
| | | } |
| | | for(i = start; i < end; ++i){ |
| | | test.X.vals[i-start] = d.X.vals[i]; |
| | | test.y.vals[i-start] = d.y.vals[i]; |
| | | } |
| | | for(i = end; i < d.X.rows; ++i){ |
| | | train.X.vals[i-(end-start)] = d.X.vals[i]; |
| | | train.y.vals[i-(end-start)] = d.y.vals[i]; |
| | | } |
| | | split[0] = train; |
| | | split[1] = test; |
| | | return split; |
| | | } |
| | | |